Дроссельная заслонка это


типы устройств и особенности их обслуживания


Дроссельная заслонка регулирует подачу топливно-воздушной смеси в двигатель внутреннего сгорания, изменяя проходное сечение канала. По сути она является воздушным клапаном: при открытой заслонке давление во впускной системе равняется атмосферному, при закрытой – уменьшается вплоть до разрежения.

Заслонка установлена между воздушным фильтром и впускным коллектором. Помимо основной задачи – дозирования воздуха для нормального функционирования силового агрегата в любом режиме эксплуатации – заслонка отвечает также за поддержание требуемых оборотов коленвала на холостом ходу (с разной нагрузкой на двигатель) и за нормальное функционирование усилителя тормозной системы.

Основными конструктивными элементами дроссельной заслонки являются:

  • Корпус
  • Заслонка с осью
  • Механизм привода


По типу привода и наличию дополнительных элементов (датчиков, каналов и пр. ) дроссельные заслонки подразделяются на механические, электромеханические и электронные.

Основная особенность механической заслонки заключается в том, что ею водитель управляет самостоятельно при помощи тросового привода, соединяющего педаль акселератора с сектором газа.

В конструкцию этого узла дополнительно входят датчик положения (угла открытия заслонки), регулятор холостого хода (ХХ), байпасные каналы, система подогрева.


Основным недостатком механического дроссельного узла является возможная погрешность при приготовлении топливовоздушной смеси.

Это сказывается на экономичности и мощности двигателя. ЭБУ не управляет механической заслонкой, а лишь собирает информацию об угле открытия. При его резких изменениях блок не всегда успевает «подстроиться» под новые условия, что приводит к перерасходу топлива.

Дроссельная заслонка электромеханического типа также управляется с помощью троса, однако, вместо дополнительных каналов, оснащена электромотором с редуктором, который соединен с осью заслонки.



Блок управления в таком типе узла может регулировать работу двигателя на холостых оборотах. В остальных режимах функционирования ДВС дросселем управляет водитель.

Механизм частичного управления открытием заслонки позволил упростить конструкцию самого дросселя, однако не устранил погрешность в смесеобразовании.

Такой проблемы не имеет только электронная дроссельная заслонка, которая устанавливается на современные модели автомобилей. Ее основная особенность – отсутствие прямого взаимодействия педали акселератора с осью. Блок управления электронной заслонки регулирует ее открытие на всех режимах эксплуатации двигателя. В конструкцию дополнительно введен датчик положения педали акселератора.

В процессе работы ЭБУ использует информацию не только с различных датчиков, но и со следящих устройств автоматических трансмиссий, тормозной системы, климатического оборудования, круиз-контроля.

Блок обрабатывает все поступающие сигналы и устанавливает оптимальный угол открытия заслонки.


Такие образом, электронная система позволяет полностью контролировать работу системы впуска, устраняя погрешности в смесеобразовании на любом режиме эксплуатации силовой установки.



Несмотря на, казалось бы, идеально продуманную схему работы, электронные дроссельные заслонки не лишены недостатков. Так как их открытие происходит при помощи электродвигателя, любые, даже незначительные его неисправности, приводят к нарушению работы узла. Естественно, это сказывается на функционировании двигателя. В тросовых механизмах управления такой проблемы нет.

Еще один недостаток касается, по большей части, бюджетных автомобилей. Из-за не конца проработанного программного обеспечения и более дешевых электронных комплектующих дроссель может работать с запозданием: после нажатия на педаль акселератора блок управления еще некоторое время собирает и обрабатывает информацию, после чего подает сигнал на электродвигатель дросселя.


Дроссельная заслонка в процессе работы загрязняется продуктами сгорания топлива – как со стороны впускного коллектора, так и со стороны воздуховода (в случае наличия системы рециркуляции отработавших газов).

Кроме того, большинство дроссельных заслонок имеют осевой люфт, который со временем приводит к возникновению выработки – канавки глубиной до 1 мм в корпусе дросселя. В результате топливная смесь обедняется, обороты двигателя на холостом ходу теряют стабильность и плохо поддаются регулированию. В итоге нарушается плавность движения автомобиля, ухудшается динамика его разгона.


Для минимизации негативных последствий, а также повышения долговечности и надежности двигателя ведущие автопроизводители наносят на дроссельные заслонки антифрикционные твердосмазочные покрытия (АТСП).

Использование АТСП позволяет:

  • Обеспечить плавное движение дроссельной заслонки
  • Повысить чувствительность устройства
  • Предотвратить заедание механизма
  • Минимизировать износ трущихся поверхностей

АТСП, нанесенные на заслонку, по внешнему виду напоминают лакокрасочные покрытия. При неквалифицированном техническом обслуживании их могут повредить случайно или намеренно, при этом четкость работы всего механизма и его ресурс значительно снижаются.


Поврежденное твердосмазочное покрытие нуждается в обязательном восстановлении. Сегодня это может сделать любой автолюбитель, так как эффективные и удобные в применении антифрикционные материалы выпускаются в нашей стране.

Одно из наиболее популярных и перспективных АТСП – MODENGY Для деталей ДВС. Данное покрытие на основе дисульфида молибдена и графита выпускается в аэрозольных баллонах, поэтому может наноситься на внутренние поверхности дроссельной заслонки непосредственно, без привлечения специализированного оборудования.

MODENGY Для деталей ДВС защищает заслонку от повышенного трения, износа и коррозии, долгое время сохраняет устойчивость к воздействию агрессивных сред, в том числе моторного масла.

Покрытие наносится на предварительно очищенную дроссельную заслонку в несколько слоев. Время промежуточной сушки каждого слоя составляет 10 минут. Состав отверждается за 12 часов при комнатной температуре, после чего узел допускается к сборке.

Для чистки дроссельной заслонки производитель покрытия рекомендует использовать Специальный очиститель-активатор MODENGY. Он не только удаляет загрязнения, но и обеспечивает максимальное сцепление АТСП с обрабатываемой поверхностью.

Покрытие для деталей двигателя и очиститель MODENGY выпускаются в наборе, что значительно экономит время и деньги на проведение необходимых операций.

Возврат к списку

Дроссельная заслонка – назначение, устройство, принцип работы

Дроссельная заслонка является конструктивным элементом впускной системы бензиновых двигателей внутреннего сгорания с впрыском топлива и предназначена для регулирования количества воздуха, поступающего в двигатель для образования топливно-воздушной смеси. Дроссельная заслонка устанавливается между воздушным фильтром и впускным коллектором.

По своей сути дроссельная заслонка является воздушным клапаном. При открытой заслонке давление во впускной системе соответствует атмосферному давлению, при закрытии - уменьшается до состояния вакуума. Это свойство дроссельной заслонки используется в работе вакуумного усилителя тормозов, для продувки адсорбера системы улавливания паров бензина.

Дроссельная заслонка может иметь механический привод или электрический привод с электронным управлением.

Дроссельная заслонка с механическим приводом

Механический привод дроссельной заслонки в настоящее время применяется на большинстве бюджетных машин. Привод предполагает связь педали газа и дроссельной заслонки с помощью металлического троса.

Элементы дроссельной заслонки объединены в отдельный блок, который включает корпус, дроссельную заслонку на валу, датчик положения дроссельной заслонки, регулятор холостого хода.

Корпус дроссельной заслонки включен в систему охлаждения двигателя. В нем также выполнены патрубки, обеспечивающие работу системы вентиляции картера и системы улавливания паров бензина.

Регулятор холостого хода поддерживает заданную частоту вращения коленчатого вала двигателя при закрытой дроссельной заслонке во время пуска, прогрева и при изменении нагрузки во время включения дополнительного оборудования. Он состоит из шагового электродвигателя и соединенного с ним клапана, которые изменяют количество воздуха, поступающего во впускную систему в обход дроссельной заслонки.

Дроссельная заслонка с электрическим приводом

На современных автомобилях механический привод дроссельной заслонки заменен на электрический привод с электронным управлением, что позволяет достичь оптимальной величины крутящего момента на всех режимах работы двигателя. При этом обеспечивается снижение расхода топлива, выполнение экологических требований, безопасность движения.

Отличительными особенностями дроссельной заслонки с электрическим приводом являются:

  • отсутствие механической связи между педалью акселератора и дроссельной заслонкой;
  • регулирование холостого хода путем перемещения дроссельной заслонки.

Так как между педалью газа и дроссельной заслонкой нет жесткой связи, используется электронная система управления дроссельной заслонкой. Электроника в управлении дроссельной заслонкой позволяет влиять на величину крутящего момента двигателя, даже если водитель не воздействует на педаль газа. Система включает входные датчики, блок управления двигателем и исполнительное устройство.

Помимо датчика положения дроссельной заслонки в системе управления используется датчик положения педали акселератора, выключатель положения педали сцепления, выключатель положения педали тормоза.

В работе системы управления дроссельной заслонкой также используются сигналы от автоматической коробки передач, тормозной системы, климатической установки, системы круиз-контроля.

Блок управления двигателем воспринимает сигналы от датчиков и преобразует их в управляющие воздействия на модуль дроссельной заслонки.

Модуль дроссельной заслонки состоит из корпуса, собственно дроссельной заслонки, электродвигателя, редуктора, возвратного пружинного механизма и датчиков положения дроссельной заслонки.

Для повышения надежности в модуле устанавливается два датчика положения дроссельной заслонки. В качестве датчиков используются потенциометры со скользящим контактом или бесконтактные магниторезистивные датчики. Графики изменения выходных сигналов датчиков направлены навстречу друг другу, что позволяет их различать блоку управления двигателем.

В конструкции модуля предусмотрено аварийное положение дроссельной заслонки при неисправности привода, которое осуществляется с помощью возвратного пружинного механизма. Неисправный модуль дроссельной заслонки заменяется в сборе.

 

 

Что такое дроссельная заслонка?

`;

Автомобили

Факт проверен

Лори Килчерманн

Дроссельный клапан — это устройство, установленное на автомобильном двигателе. Поток топлива и, следовательно, мощность двигателя напрямую регулируются этим клапаном. На двигателе с карбюратором дроссельную заслонку также называют дроссельной заслонкой. Когда педаль газа нажата, открывается дроссельная заслонка или дроссельная заслонка, позволяя большему количеству воздуха и топлива поступать в камеру сгорания, что приводит к увеличению мощности. В системе впрыска топлива этот клапан регулирует поток воздуха только тогда, когда бортовой компьютер автомобиля регулирует поток топлива.

Бензиновый двигатель внутреннего сгорания на самом деле представляет собой воздушный насос. Чем больше воздуха попадает в двигатель, тем больше воздуха или мощности выходит из двигателя. Подобно тому, как дуновение на костер заставит красные угли вспыхнуть пламенем, дроссельный клапан позволяет воздуху зажечь топливо, подаваемое в камеру сгорания. Подавая больше воздуха в двигатель, можно сжечь больше бензина, что приводит к увеличению мощности и крутящего момента.

Дизельный двигатель не имеет дроссельной заслонки. Выходная мощность двигателя не зависит напрямую от количества воздуха, попадающего в систему. Выходная мощность дизельного двигателя зависит от количества топлива, попадающего в камеру сгорания. Таким образом, педаль газа в автомобиле с дизельным двигателем не открывает бабочку, а регулирует топливный насос высокого давления, который регулирует скорость подачи топлива в двигатель.

Хотя в подавляющем большинстве серийных автомобилей используется один дроссельный клапан, в некоторых высокопроизводительных моделях используется независимый дроссельный клапан для каждого цилиндра двигателя. Использование нескольких дроссельных заслонок означает гораздо более быстрое ускорение и, в конечном итоге, большую выработку мощности. Подавая питание на каждый отдельный цилиндр отдельно, производительность можно повысить за счет точной настройки и настройки каждого цилиндра для работы с максимальным потенциалом. Эта индивидуальная настройка цилиндра может компенсировать плохой впускной заряд, а также различия в ограничениях выхлопа.

Средняя педаль газа управляет дроссельной заслонкой с помощью цельнометаллического рычажного стержня или троса. Достижения в конструкции транспортных средств привели к появлению технологии электропривода. В этой системе используется электронный сервопривод, который получает сигнал от передатчика, расположенного на педали газа, для управления управляемой компьютером бабочкой с дистанционным управлением. В этой системе нет прямой связи между водителем и двигателем. Компьютер автомобиля интерпретирует потребности водителя и выполняет эту функцию за него.

Вам также может понравиться

Рекомендуется

КАК ПОКАЗАНО НА:

Какие клапаны можно использовать для дросселирования?

Трубопроводные системы не обходятся без промышленной арматуры. Они бывают разных размеров и стилей, потому что они должны удовлетворять разные потребности.

Промышленные клапаны можно классифицировать в зависимости от их функции. Имеются клапаны, останавливающие или запускающие поток среды; есть те, которые контролируют, куда течет жидкость. Есть и другие, которые могут варьировать количество потоков мультимедиа.

Выбор правильного типа клапана имеет решающее значение для промышленной эксплуатации. Неправильный тип будет означать отключение системы или низкую производительность системы.

 

Что такое дроссельные клапаны

Дроссельный клапан может открывать, закрывать и регулировать поток среды. Дроссельные клапаны являются регулирующими клапанами. Некоторые люди используют термин «регулирующие клапаны» для обозначения дроссельных клапанов. Правда в том, что есть четкая линия, определяющая их. Дроссельные клапаны имеют диски, которые не только останавливают или запускают поток среды. Эти диски также могут регулировать количество, давление и температуру среды, проходящей через них, в любом заданном положении.

 

Дроссельные клапаны имеют более высокое давление на одном конце и более низкое давление на другом конце. Это закрывает клапан, в зависимости от степени давления. Одним из таких примеров является мембранный клапан.

С другой стороны, регулирующие клапаны регулируют поток среды с помощью привода. Он не может функционировать без него.

Давление и температура нарушают поток среды, поэтому его регулируют регулирующие клапаны. Кроме того, эти клапаны могут изменять условия расхода или давления в соответствии с требуемыми условиями трубопроводной системы.

В этом смысле регулирующие клапаны являются специализированными дроссельными клапанами. При этом регулирующие клапаны могут дросселировать, но не все дроссельные клапаны являются регулирующими клапанами.

Лучшим примером является гидравлическая система, в которой внешняя сила должна сбрасывать вакуум, чтобы газ мог попасть в клапан.

Дроссельный механизм

Когда в трубопроводе используется дроссельный клапан, скорость потока среды изменяется. При частичном открытии или закрытии клапана происходит ограничение потока жидкости. Таким образом, контроль СМИ.

Это, в свою очередь, уплотняет среду в частично открытом клапане. Молекулы носителя начинают притираться друг к другу. Это создает трение. Это трение дополнительно замедляет поток среды при ее прохождении через клапан.

Чтобы лучше проиллюстрировать, думайте о трубопроводе как о садовом шланге. При включении вода идет прямо из шланга без каких-либо ограничений. Течение не сильное. Теперь представьте клапан как большой палец, частично закрывающий горловину шланга.

Вытекающая вода меняет скорость и давление из-за препятствия (большого пальца). Она намного сильнее, чем та вода, которая еще не прошла через клапан. В базовом смысле это дросселирование.

Чтобы применить это в трубопроводной системе, системе необходимо, чтобы более холодный газ находился в требуемом более горячем состоянии. При установленном дроссельном клапане температура газа повышается. Это происходит из-за того, что молекулы трутся друг о друга, пытаясь выбраться из клапана через ограниченное отверстие.

Источник: https://www.quora.com/What-is-the-throttling-process

 

Применение дроссельных клапанов

Дроссельные клапаны могут использоваться в самых разных областях. Часто можно найти дроссельные клапаны в следующих отраслях промышленности:

    ● Системы кондиционирования воздуха

    ● Охлаждение

    ● Гидравлика

    ● Паровые установки

-3     ●

0004     ● Фармацевтические применения

    ● Химические применения

    ● Пищевая промышленность

    ● ● Системы жидкого топлива

 

Конструкция клапана является одной из основных причин, по которой некоторые клапаны не подходят для дросселирования.

Проходной

Проходной клапан является одним из самых популярных видов клапанов. Шаровой клапан в основном используется в качестве дроссельной заслонки. Он относится к семейству линейных клапанов. Шаровой диск перемещается вверх или вниз относительно неподвижного кольцевого седла. Его диск или штекер контролируют количество носителя, которое может пройти.

Пространство между седлом и кольцом позволяет шаровому клапану работать как большой дроссельный клапан. Благодаря своей конструкции седло и диск или заглушка меньше повреждаются.

Ограничения

Из-за конструкции шарового клапана при использовании в условиях высокого давления требуется автоматический или приводной привод для перемещения штока и открытия клапана. Падение давления и диапазон регулирования расхода — два фактора, определяющие эффективность дросселирования.

Также существует вероятность утечки из-за поврежденного седла, так как оно находится в полном контакте с проточной средой. Этот клапан также подвержен воздействию вибрации, особенно когда среда представляет собой газ.

Дроссельная заслонка

Дроссельная заслонка внешне похожа на задвижку. Но одним из их явных отличий является то, что дроссельная заслонка принадлежит к семейству четвертьоборотных клапанов.

На привод действует внешняя сила. Этот привод прикреплен к штоку, который соединяется с диском.

Среди наиболее распространенных клапанов дисковый затвор больше всего подходит для дросселирования. Полная четверть оборота может открыть или закрыть клапан. Чтобы произошло дросселирование, ему нужно только немного открыться для прохождения носителя.

Ограничения

Одним из ограничений дисковых затворов является то, что диск всегда находится на пути потока среды. Весь диск более подвержен эрозии. Также из-за такой конструкции очистка внутренних деталей затруднена.

Чтобы дисковый затвор был эффективным, правильные расчеты должны определять требования к максимальному расходу и давлению.

Задвижка

Задвижка относится к семейству клапанов линейного перемещения. Задвижки имеют диски, которые перемещаются вверх и вниз для открытия и закрытия клапанов. Они в основном используются в качестве услуг включения-выключения. Задвижки имеют ограничения в качестве дроссельных клапанов.

 В почти закрытом проеме происходит дросселирование, поскольку оно ограничивает поток среды. Это увеличивает скорость среды, когда она выходит из клапана.

Ограничения

Единственный раз, когда вы должны использовать задвижки для дросселирования, это когда клапан 90% закрыты. Закрытие его примерно до 50% не обеспечит желаемых возможностей дросселирования. Недостатком использования задвижки является то, что скорость среды может легко разрушить поверхность диска.

Кроме того, задвижки не следует использовать в качестве дроссельных клапанов в течение длительного времени. Давление может разорвать седло затвора, и клапан больше не сможет полностью закрыться. Другое, если среда жидкая, возникает вибрация. Эта вибрация также может повлиять на сиденье.

Зажим

Пережимной клапан, считающийся одной из самых простых конструкций, имеет футеровку из мягкого эластомера. Его защемляют, чтобы закрыть с помощью давления жидкости. Отсюда и его название. Пережимной клапан, относящийся к семейству линейных перемещений, имеет малый вес и прост в обслуживании.

Пережимные клапаны очень эффективны, когда стерильность и санитария являются приоритетными. Эластомерная прокладка защищает металлические части клапана.

Шток крепится к компрессору, футеровка которого находится точно над гильзой. Пережимной клапан закрывается, когда компрессор опускается на гильзу.

Возможности дросселирования пережимного клапана обычно составляют от 10% до 95% пропускной способности. Его лучший показатель эффективности составляет 50%. Это происходит благодаря мягкому вкладышу и гладким стенкам.

Ограничения

Этот клапан не работает наилучшим образом, когда среда содержит острые частицы, особенно когда клапан закрыт на 90%. Это может привести к разрыву эластомерного вкладыша. Этот клапан не подходит для газовых сред и приложений с высоким давлением и температурой.

Мембрана

Мембранный клапан очень похож на пережимной клапан. Однако его дросселирующее устройство представляет собой эластомерную диафрагму вместо эластомерного вкладыша. Вы можете проверить, как работают мембранные клапаны, в этом видео.

В пережимном клапане компрессор опускается в гильзу, а затем пережимает ее, чтобы остановить поток среды. В мембранном клапане диск диафрагмы давит на дно клапана, закрывая его.

Такая конструкция позволяет более крупным частицам проходить через клапан. Между прямоточным мембранным клапаном и мембранным клапаном водосливного типа последний лучше подходит для дросселирования.

Ограничения

Несмотря на то, что мембранные клапаны могут обеспечить герметичное уплотнение, они могут выдерживать только умеренный диапазон температуры и давления. Кроме того, его нельзя использовать в многооборотных операциях.

Игла

 

Игольчатый клапан похож на шаровой клапан. Вместо шарообразного диска игольчатый клапан имеет игольчатый диск. Это больше подходит для приложений, требующих точного регулирования.

Кроме того, игольчатые клапаны являются лучшими регуляторами управления клапанами для небольших количеств. Жидкость течет по прямой линии, но поворачивается на 900, если клапан открыт. Из-за этой конструкции 900 некоторые части диска проходят через отверстие седла до полного закрытия. Вы можете просмотреть 3D-анимацию пережимного клапана здесь.

Ограничения

Игольчатые клапаны предназначены для деликатного промышленного применения. При этом более густые и вязкие среды не подходят для игольчатых клапанов. Отверстие этого клапана маленькое, и частицы взвеси задерживаются в полости.

 

Как выбрать дроссельный клапан

Каждый тип дроссельного клапана имеет свои преимущества и ограничения. Понимание цели внедрения дроссельного клапана всегда сужает выбор правильного типа дроссельного клапана.

Размер клапана

Правильный размер клапана означает устранение проблем с клапаном в будущем. Например, слишком большой клапан означает ограниченную дросселирующую способность. Скорее всего, он будет находиться вблизи своего закрытого положения. Это делает клапан более подверженным вибрации и эрозии.

Кроме того, слишком большой клапан будет иметь дополнительные фитинги для регулировки труб. Фурнитура дорогая.

Материал конструкции

Материал корпуса клапана является важным аспектом при выборе дроссельного клапана. Он должен быть совместим с типом материала, который будет проходить через него. Например, среда на химической основе должна проходить через неагрессивный клапан. Среда, склонная к высокой температуре или давлению, должна переходить в прочный сплав с внутренним покрытием.

Привод

Привод также играет большую роль при выборе правильного дроссельного клапана. В трубопроводных приложениях бывают случаи, когда присутствует сильное давление. Из-за этого ручной привод может быть неэффективен при открытии или закрытии клапана.


Learn more