Свободнопоршневой двигатель внутреннего сгорания


Свободнопоршневой двигатель внутреннего сгорания (варианты)

Область техники изобретения

Настоящее изобретение относится к линейным двигателям внутреннего сгорания с высоким КПД и, в частности, некоторые варианты осуществления изобретения относятся к линейным двигателям внутреннего сгорания с высоким КПД, в которых обеспечивается достижение высоких степеней сжатия/расширения при использовании конструкции свободнопоршневого двигателя в сочетании с линейной электромагнитной машиной для обеспечения работы по выпуску газов и инновационной концепции управления процессом сгорания.

Описание известного уровня техники

За последние 30 лет показатели удельной мощности и эмиссии двигателя внутреннего сгорания улучшились; но общий КПД остался относительно неизменным. Специалистам в области двигателей внутреннего сгорания хорошо известен тот факт, что увеличение геометрической степени сжатия двигателя ведет к увеличению теоретического предела КПД двигателя. Кроме того, увеличение геометрической степени расширения двигателя настолько, что она превышает его степень сжатия, ведет к еще большему увеличению теоретического предела его КПД. Для краткости "геометрическая степень сжатия" и "геометрическая степень расширения" упоминаются соответственно как "степень сжатия" и "степень расширения".

На фиг. 1 (известный уровень техники) показаны ограничения по теоретическому КПД двух циклов, обычно используемых в двигателях внутреннего сгорания - Отто и Аткинсона. В частности, на фиг. 1 сопоставляются идеальные КПД циклов Отто и Аткинсона в функции степени сжатия. Модельные допущения включают: (i) давление в нижней мертвой точке ("BDC") равно одной атмосфере; и (ii) стехиометрическое соотношение предварительно смешанных идеального газа метана и воздуха, включая переменные свойства, диссоциированные продукты и равновесие во время расширения.

Как показано на фиг. 1, с увеличением степени сжатия наблюдается значительное увеличение теоретических пределов КПД для обоих циклов. Идеальный цикл Отто разбит на три ступени: 1) изоэнтропическое сжатие, 2) адиабатическое сгорание при постоянном объеме и 3) изоэнтропическое расширение до первоначального объема в BDC. Степень расширения для цикла Отто равна его степени сжатия. Идеальный цикл Аткинсона тоже разбит на три ступени: 1) изоэнтропическое сжатие 2) адиабатическое сгорание при постоянном объеме и 3) изоэнтропическое расширение до первоначального давления в BDC (в этом примере равно одной атмосфере). Степень расширения для цикла Аткинсона всегда больше, чем его степень сжатия, как показано на фиг. 1. Несмотря на то, что цикл Аткинсона имеет больший теоретический предел КПД, чем цикл Отто для определенной степени сжатия, он имеет значительно более низкую плотность энергии (мощность на единицу массы). На практике выбирается компромиссный вариант между КПД и плотностью энергии.

В имеющихся в настоящее время на рынке удачно спроектированных/сконструированных двигателях внутреннего сгорания, как правило, достигаются тормозные КПД, составляющие 70-80% теоретических пределов их КПД. На фиг. 2 (известный уровень техники) показаны КПД нескольких коммерчески доступных двигателей внутреннего сгорания. Фиг. 2, в частности, сопоставляется предел КПД идеального цикла Отто с КПД нескольких коммерчески доступных двигателей внутреннего сгорания, имеющихся в настоящее время на рынке. Модельные допущения включают стехиометрическое соотношение предварительно смешанных идеального газа пропана и воздуха, в том числе переменные свойства, диссоциированные продукты и равновесное состояние во время расширения. Действительная степень сжатия определяется как отношение плотности газа в верхней мертвой точке ("TDC") к плотности газа в BDC. Действительная степень сжатия предоставляет средство сравнения двигателей с форсированием с безнаддувными двигателями при равных условиях. Для того чтобы аналогично удачно спроектированный двигатель имел тормозной КПД свыше 50% (то есть, по меньшей мере, 70% его теоретического КПД), двигатель, работающий согласно циклу Отто, должен иметь степень сжатия, превышающую 102, и двигатель, работающий согласно циклу Аткинсона, должен иметь степень сжатия свыше 14, что соответствует степени расширения, равной 54, как видно из фиг. 1.

В традиционных поршневых возвратно-поступательных двигателях с кривошипно-шатунным механизмом ("традиционные двигатели") трудно достичь высоких степеней сжатия/расширения (свыше 30) из-за присущей таким двигателям структуры. На фиг. 3 (известный уровень техники) приведен схематический чертеж, поясняющий конструкцию традиционных двигателей и проблемы, препятствующие достижению в них высоких степеней сжатии. В типичных двигателях внутреннего сгорания ("ДВС") отношение диаметра цилиндра к ходу поршня колеблется в пределах 0,5-1,2 и степень сжатия колеблется в пределах 8-24. (Heywood, J. (1988). Internal Combustion Engine Fundamentals. McGraw-Hill). По мере увеличения степени сжатия двигателя при сохранении того же отношения диаметра цилиндра к ходу поршня увеличивается отношение площади поверхности к объему в верхней мертвой точке (TDC), повышается температура и повышается давление. Это имеет следующие три главных последствия: 1) увеличивается теплоотдача от камеры сгорания, 2) становится затруднительной синхронизация по фазе в камере сгорания, и 3) возрастают трение и механические потери. Теплоотдача увеличивается из-за того, что доля теплового граничного слоя в общем объеме становится больше (то есть формат в TDC уменьшается). Формат определяется как отношение диаметра цилиндра к длине камеры сгорания. Синхронизация по фазе процесса горения и достижение полного сгорания затруднены вследствие малого объема, реализованного в TDC. Повышенное давление камеры сгорания непосредственно преобразуется в увеличенные силы. Эти большие силы могут вызвать перегрузку, как механических связей, так и поршневых колец.

Несмотря на то, что свободнопоршневые двигатели внутреннего сгорания не являются новыми, их, как правило, не использовали или не разрабатывали в расчете на получение степеней сжатия/расширения свыше 30:1, за исключением работы, выполнявшейся в Национальной лаборатории Сэндиа (см. патент США №6199519). Существует большое количество литературы и патентов по свободнопоршневым двигателям. Однако литература ориентирована на свободнопоршневые двигатели, имеющие малую длину хода, в связи с чем для них характерны проблемы, аналогичные имеющим место в поршневых возвратно-поступательных двигателях при приближении к области высоких степеней сжатия/расширения, а именно проблемы, связанные с управлением процессом горения и большими потерями от теплопередачи. Конструкции свободнопоршневых двигателей можно разделить на три категории, а именно: 1) с двумя оппозитными поршнями и одной камерой сгорания, 2) с одним поршнем и двумя камерами сгорания и 3) с одним поршнем и одной камерой сгорания. На фиг. 4 (известный уровень техники) представлена диаграмма, демонстрирующая три общеизвестные конструкции свободнопоршневого двигателя. Конструкции свободнопоршневого двигателя с одним поршнем и двумя камерами имеют ограничение по степени сжатия вследствие неуравновешенности больших сил, возникающих при высоких степенях сжатия, которые могут вызывать механическую неустойчивость.

Как упомянуто выше, в научно-технической литературе и патентной документации на момент создания изобретения предлагается несколько вариантов свободнопоршневых двигателей. Из многочисленных предлагавшихся конструкций свободнопоршневых двигателей практическое применение нашли лишь несколько (насколько известно авторам данного изобретения). В научно-исследовательской работе Микалсена и Роскилли описываются свободнопоршневые двигатели в Университете Западной Вирджинии, Национальной лаборатории Сандиа и Королевского технологического института в Швеции. Mikalsen R., Roskilly A.P. A review of free-piston engine history and applications. Applied Thermal Engineering, 2007; 27:2339-2352. Имеются сведения о научно-исследовательских работах, которые проводятся в Чешском техническом университете (http://www.Iceproject.org/en/), фирмой INNAS BV в Нидерландах (http://www.innas.com/) и фирмой Pempek Systems в Австралии (http://www.freepistonpower.com/). Все известные нашедшие практическое применение свободнопоршневые двигатели имеют малую длину хода и поэтому имеют аналогичные нежелательные последствия при приближении к области высоких степеней сжатия/расширения, а именно к проблемам с управлением процессом горения и большим потерям на теплопередачу. Кроме того, все двигатели, за исключением опытного образца в Национальной лаборатории Сандиа (Aichlmayr, Н.Т., Van Blarigan, P. Modeling and Experimental Characterization of a Permanent Magnet Linear Alternator for Free-Piston Engine Applications ASME Energy Sustainability Conference San Francisco CA, July 19-23 2009) и опытного образца, разработанного ОРОС (международная патентная заявка WO 03/07883), имеют конструкции с одним поршнем и двумя камерами сгорания и поэтому имеют ограничение в отношении степени сжатия в связи с тем, что большие усилия, возникающие при высоких степенях сжатия, не уравновешены, что вызывает потерю механической устойчивости.

Принимая во внимание ограничения, свойственные конструкциям традиционных двигателей, описанные выше, некоторые изготовители предприняли попытки, и продолжают предпринимать попытки, повысить КПД двигателя путем перехода к высокоэффективным степеням сжатия за счет использования турбокомпрессоров или компрессоров наддува. Форсирование двигателя посредством турбокомпрессоров или компрессоров наддува обеспечивает достижение высокоэффективной степени сжатия при сохранении той же геометрической степени сжатия. Форсирование двигателя не устраняет нежелательные последствия, обусловленные превышением нормальных значений сил, которое имеет место в TDC или вблизи нее. По этой причине под действием таких сил может возникать перегрузка как механических связей внутри двигателя (поршневого пальца, штока поршня, и коленчатого вала), приводящая к механической неисправности, так и компрессионных поршневых колец, приводящая к повышенному трению, износу или неисправности. Форсирование двигателя также ведет, как правило, к увеличению потерь на теплопередачу вследствие недостаточного уменьшения времени нахождения в TDC или ее окрестности (то есть при самых высоких температурах), что обусловливает превышение нормальных температур в TDC или вблизи нее.

Краткое описание вариантов осуществления изобретения

В примерах осуществления настоящего изобретения предлагаются линейные двигатели внутреннего сгорания с высоким КПД. В этих вариантах осуществления устранены недостатки, мешающие достижению в традиционных двигателях высоких степеней сжатия/растяжения, за счет использования свободнопоршневой структуры двигателя в сочетании с линейной электромагнитной машиной для обеспечения работы по удалению газов и инновационной стратегии управления процессом горения. Изобретение, сущность которого здесь раскрыта, обеспечивает повышение теплового КПД двигателей внутреннего сгорания до уровня свыше 50% в диапазоне, подходящем для распределенных источников производства электроэнергии и/или гибридных электромобилей (5 кВт - 5 МВт).

В одном примере осуществления изобретения предлагается линейный двигатель внутреннего сгорания, включающий в себя: цилиндр, имеющий стенку цилиндра и два конца, причем цилиндр содержит секцию сгорания, расположенную в центральной части цилиндра; два оппозитных поршневых узла, приспособленных для прямолинейного перемещения внутри цилиндра, причем каждый поршневой узел расположен с одной стороны секции сгорания напротив другого поршневого узла, каждый поршневой узел содержит подпружиненный шток и поршень, включающий сплошную переднюю часть, примыкающую к секции сгорания, и полую заднюю часть, содержащую пневматическую пружину, непосредственно обеспечивающую, по меньшей мере, часть работы сжатия в течение такта сжатия двигателя; и две электромагнитные машины, приспособленные для непосредственного преобразования кинетической энергии поршневого узла в электрическую энергию и приспособленные для непосредственного преобразования электрической энергии в кинетическую энергию поршневого узла для обеспечения работы сжатия в течение такта сжатия; при этом двигатель имеет переменную степень расширения свыше 50:1.

В другом примере осуществления изобретения предлагается линейный двигатель внутреннего сгорания, включающий в себя: цилиндр, имеющий стенку цилиндра и секцию сгорания, расположенную на одном конце цилиндра; поршневой узел, приспособленный для прямолинейного перемещения внутри цилиндра, содержащий подпружиненный шток и поршень, включающий сплошную переднюю часть, примыкающую к секции сгорания, и полую заднюю часть, содержащую пневматическую пружину, непосредственно обеспечивающую, по меньшей мере, часть работы сжатия в течение такта сжатия двигателя; и линейную электромагнитную машину, приспособленную для непосредственного преобразования кинетической энергии поршневого узла в электрическую энергию и приспособленную для непосредственного преобразования электрической энергии в кинетическую энергию поршневого узла для обеспечения работы сжатия в течение такта сжатия; при этом двигатель имеет переменную степень сжатия свыше 50:1.

Другие признаки и особенности изобретения очевидны из приведенного ниже подробного описания, которое ведется со ссылками на прилагаемые графические материалы, поясняющие на примере признаки изобретения в соответствии с вариантами осуществления изобретения. Данное краткое описание не имеет целью ограничение объема изобретения, который определяется исключительно прилагаемой формулой изобретения.

Краткое описание графических материалов

Настоящее изобретение, в соответствии с одним или несколькими различными вариантами его осуществления, подробно описывается со ссылкой на приведенные ниже фигуры графических материалов. Графические материалы приведены исключительно в целях иллюстрации и всего лишь показывают типичные варианты осуществления изобретения. Эти графические материалы служат для облегчения понимания сущности изобретения при прочтении текста описания изобретения и не должны рассматриваться как ограничивающие широту притязаний, объем или область применения изобретения. Следует отметить, что для удобства обзора и простоты выполнения иллюстраций эти графические материалы не требуют соблюдения масштаба.

Фиг. 1 (известный уровень техники) - график, поясняющий теоретические пределы КПД для двух циклов, обычно используемых в двигателях внутреннего сгорания.

Фиг. 2 (известный уровень техники) - график, сопоставляющий предел КПД идеального цикла Отто и несколько коммерчески доступных двигателей, имеющихся в настоящее время на рынке.

Фиг. 3 (известный уровень техники) - схематический чертеж, поясняющий конструкцию традиционных двигателей и проблемы, мешающие достижению в них высоких степеней сжатия.

Фиг. 4 (известный уровень техники) - диаграмма, демонстрирующая три обычные конструкции свободнопоршневого двигателя.

Фиг.5 - график, позволяющий сопоставить экспериментальные данные, полученные от опытного образца в Стэнфордском университете, с пределом КПД идеального цикла Отто.

Фиг. 6 - вид в разрезе примера выполнения двухпоршневого двухтактного варианта осуществления двигателя внутреннего сгорания со встроенными пневматическими пружинами в соответствии с принципами изобретения.

Фиг. 7 - чертеж, демонстрирующий двухтактный цикл поршневого узла двухпоршневого двигателя со встроенными пневматическими пружинами по фиг. 6.

Фиг. 8 - вид в разрезе примера выполнения двухпоршневого четырехтактного двигателя варианта осуществления двигателя внутреннего сгорания со встроенными пневматическими пружинами в соответствии с изобретением.

Фиг. 9 - вид в разрезе четырехтактного цикла поршневого узла двухпоршневого двигателя со встроенными пневматическими пружинами по фиг. 8 в соответствии с изобретением.

Фиг. 10 - вид в разрезе альтернативного варианта двухпоршневого двухтактного двигателя с одной секцией сгорания и полностью встроенными пневматическим пружинами и линейной электрической машиной в соответствии с изобретением.

Фиг. 11 - вид в разрезе альтернативного варианта двухпоршневого двухтактного двигателя с одной секцией сгорания и отделимыми пневматическими пружинами в соответствии с принципами изобретения.

Фиг. 12 - вид в разрезе однопоршневого двухтактного двигателя внутреннего сгорания с интегрированными пневматическими пружинами в соответствии с изобретением.

Фиг. 13 - схематический чертеж однопоршневого двухтактного двигателя с двухтактным циклом поршневого узла и отделимыми пневматическими пружинами по фиг.12 в соответствии с принципами изобретения.

Фиг. 14 - вид в разрезе однопоршневого четырехтактного двигателя с отделимыми пневматическими пружинами в соответствии с изобретением.

Фиг. 15 - схематический чертеж, демонстрирующий четырехтактный цикл поршневого узла однопоршневого двухтактного двигателя с отделимыми пневматическими пружинами по фиг. 14 в соответствии с изобретением.

Фиг. 16 - вид в разрезе другого однопоршневого двухтактного двигателя с одной секцией сгорания, полностью встроенными пневматическими пружинами и линейной электромагнитной машиной в соответствии с изобретением.

Фиг. 17 - вид в разрезе другого однопоршневого двухтактного двигателя с одной секцией сгорания, отделимыми пневматическими пружинами в соответствии с изобретением.

Фиг. 18 - вид в разрезе однопоршневого двухтактного варианта IIGS-структуры со встроенной внутрь пневматической пружиной в соответствии с примером осуществления изобретения.

Фиг. 19 - вид в разрезе примера выполнения пружинного штока в виде пневматической пружины в соответствии с изобретением.

Фиг. 20 - вид в разрезе двухпоршневого двухтактного варианта IIGS-двигателя со встроенной внутрь пневматической пружиной в соответствии с примером осуществления изобретения.

Предполагается, что чертежи не являются исчерпывающими или ограничивающими изобретение точным соблюдением раскрытых форм конструктивного исполнения. Следует понимать, что изобретение может быть осуществлено с изменениями и дополнениями и что изобретение ограничивается только формулой изобретения и его эквивалентами.

Подробное описание вариантов осуществления изобретения

В соответствии с настоящим изобретением предлагаются, в общем, линейные двигатели внутреннего сгорания с высоким КПД, обеспечивающие достижение высоких степеней сжатия/расширения за счет использования структуры свободнопоршневого двигателя в сочетании с линейной электромагнитной машиной для обеспечения работы по удалению газов и инновационной концепции управления процессом горения

В Стэнфордском университете создан и введен в действие однотактный однопоршневой опытный образец. Этот опытный образец демонстрирует реализацию концепции и обеспечивает достижение значений КПД индикаторной работы порядка 60%. График, демонстрирующий определенные экспериментальные результаты, показан на фиг. 5. В частности, на фиг. 5 графические кривые демонстрируют в сравнении экспериментальные данные, полученные от опытного образца, в Стэнфордском университете, и предел КПД для идеального цикла Отто. Модельные допущения следующие: коэффициент избытка топлива 0,3, дизель №2 и воздух, включая изменяемые параметры, диссоциированные продукты и равновесное состояние во время расширения.

В вариантах осуществления предлагается свободнопоршневой линейный двигатель внутреннего сгорания, отличительной особенностью которого является тепловой КПД, превышающий 50%. По меньшей мере в одном примере осуществления изобретения двигатель содержит: (i) по меньшей мере один цилиндр, (ii) по меньшей мере один поршневой узел в расчете на один цилиндр, приспособленный для прямолинейного перемещения внутри цилиндра, (iii) по меньшей мере одну линейную электромагнитную машину, непосредственно преобразующую кинетическую энергию поршневого узла в электрическую энергию, и (iv) по меньшей мере одну пневматическую секцию, обеспечивающую обеспечение, по меньшей мере, части работы сжатия в течение такта сжатия. Кроме того, в некоторых конструкциях двигатель внутреннего сгорания имеет следующие физические характеристики: (i) переменную степень расширения более 50:1, (ii) переменную степень сжатия, которая равна степени расширения или меньше ее, и (iii) длину секции сгорания в TDC в диапазоне 0,2-4 дюйма. Следует отметить, однако, что другие варианты осуществления изобретения могут включать различные комбинации вышеупомянутых признаков и физических характеристик.

На фиг. 6 представлен вид в разрезе варианта осуществления двухпоршневого двухтактного двигателя 100 внутреннего сгорания со встроенными пневматическими пружинами. Этот свободнопоршневой двигатель 100 непосредственно преобразует химическую энергию топлива в электрическую энергию посредством двух линейных электромагнитных машин 200. Используемый здесь термин "топливо" обозначает вещество, вступающее в реакцию с окислителем. К таким топливам относятся, в том числе: (i) углеводородные топлива, такие как природный газ, биогаз, бензин, дизельное топливо и биодизельное топливо; (ii) спиртовые топлива, такие как этанол, метанол и бутанол, и (iii) смеси любых из вышеуказанных топлив. Описываемые здесь двигатели пригодны как для стационарных генераторов энергии, так и для передвижных генераторов энергии (например, предназначенных для использования в транспортных средствах).

На фиг. 6 представлен один вариант осуществления двухпоршневого двухтактного двигателя 100 со встроенными пневматическими пружинами. В частности, двигатель 100 содержит один цилиндр 105 с двумя оппозитными поршневыми узлами 120, которые сближаются друг с другом в секции 130 сгорания (или камере сгорания) в центре цилиндра 105. Размещение секции 130 сгорания в центре двигателя 100 обеспечивает уравновешивание сил сгорания. Каждый поршневой узел 120 содержит поршень 125, уплотнения 135 поршня и шток 145 поршня. Поршневые узлы 120 имеют возможность свободного прямолинейного перемещения внутри цилиндра 105. Штоки 145 поршней перемещаются вдоль опор и герметизированы газонепроницаемыми уплотнениями 150, закрепленными к цилиндру 105. В показанном примере осуществления изобретения газонепроницаемые уплотнения 150 представляют собой уплотнения штока поршня. В данном контексте термин "опора" подразумевает любую часть машины, по которой другая часть движется, скользит или обеспечивает вращательное движение, включая, в том числе: опоры скольжения, опоры для гибких связей, шариковые опоры, роликовые опоры, пневматические опоры и/или магнитные опоры. Кроме того, термин "окружающая среда" подразумевает область, находящуюся снаружи цилиндра 105, включая, в том числе: непосредственно окружающую внешнюю среду, вспомогательные трубопроводы и/или вспомогательное оборудование.

Снова ссылаясь на фиг. 6, следует отметить, что объем между задней стороной поршня 125, штоком 145 поршня и цилиндром 105 называется в данном описании изобретения приводной секцией 160. Приводная секция 160 также может упоминаться в данном описании изобретения как "пневматическая секция", "пневматические пружины" или "секция пневматических пружин". Каждая приводная секция 160 изолирована от окружающей среды и секции 130 сгорания уплотнением 150 штока поршня и уплотнениями 135 поршня. В показанной конструкции газ, заключенный в приводной секции 160, во время цикла действует как маховое колесо (то есть пневматическая пружина), обеспечивая обеспечение, по меньшей мере, части работы сжатия во время такта сжатия. Таким образом, особенностью некоторых вариантов осуществления изобретения является использование пневматических пружин для обеспечения работы. Другие варианты осуществления изобретения предусматривают использование высокоэффективного линейного генератора переменного тока как двигателя и не требуют применения пневматических пружин для обеспечения работы сжатия.

В некоторых вариантах осуществления для получения высоких тепловых КПД двигатель 100 имеет переменную степень расширения более 50:1. В других вариантах осуществления переменная степень расширения превышает 75:1. Еще в одних вариантах осуществления переменная степень расширения больше, чем 100:1. Кроме того, особенностью некоторых вариантов осуществления изобретения является то, что степень сжатия равна степени расширения или меньше ее и длина секции сгорания в TDC заключена в диапазоне 0,2-4 дюйма. В данном описании изобретения выражение "длина секции сгорания в TDC" означает расстояние в TDC между передними сторонами двух поршней 125.

Вышеупомянутые технические условия требуют, чтобы длина хода поршня двигателя 100 была значительно больше, чем в традиционных двигателях, где термин "длина хода поршня" означает расстояние, проходимое каждым поршнем 125 между TDC и BDC. Воспламенение в камере сгорания может обеспечиваться воспламенением от сжатия и/или искровым зажиганием. Топливо может впрыскиваться в камеру 130 сгорания непосредственно через топливные форсунки ("прямой впрыск") и/или после смешивания его с воздухом, производимым перед впуском воздуха и/или во время впуска воздуха ("впрыскивание с предварительным смешиванием компонентов"). Двигатель 100 может работать со сжиганием обедненной смеси, стехиометрического состава топлива или богатой смеси с использованием жидких и/или газообразных топлив.

Из фиг. 6 также видно, что цилиндр 105 содержит каналы 170 выпуска/впрыска, впускные каналы 180, каналы 185 отвода толкающего газа и каналы 190 притока толкающего газа, для обеспечения возможности обмена веществом (твердым веществом, жидкостью газом или плазмой) с окружающей средой. В данном описании изобретения термин "канал" подразумевает любое отверстие или группу отверстий (например, с пористым материалом), которые обеспечивают обмен веществом между внутренним пространством цилиндра 105 и окружающей его средой. В некоторых вариантах осуществления не все из изображенных на фиг. 6 каналов нужны. Количество каналов и их тип зависят от конструкции двигателя, концепции впрыска и цикла поршня (например, двух- или четырехтактные циклы поршней). Для данного двухпоршневого двухтактного двигателя согласно изобретению каналы 170 выпуска/впрыска обеспечивают поступления в цилиндр и выхода из него отработавших газов и текучих сред, впускные каналы 180 предназначены для впуска воздуха и/или топливовоздушных смесей, каналы 185 отвода газа предназначены для удаления толкающего газа и каналы 190 притока толкающего газа предназначены для впуска подпиточного газа, предназначенного для приводной секции 160. Местоположение различных каналов не обязательно должно быть фиксированным. Например, в показанном примере осуществления изобретения каналы 170 выпуска/впрыска расположены по существу посередине цилиндра. Однако эти каналы могут быть, в соответствии с другим вариантом, расположены на удалении от середины вблизи впускных каналов 180.

Вышеупомянутые каналы могут или не могут открываться или закрываться посредством клапанов. Термин "клапан" может подразумевать любой приводимый в действие регулятор потока или другой приводимый в действие механизм для избирательного пропускания вещества через отверстие, включая, в том числе: шариковые клапаны, конические клапаны, дроссельные заслонки, воздушные заслонки, обратные клапаны, запорные клапаны, створчатые клапаны, поршневые клапаны, тарельчатые клапаны, поворотные клапаны, золотники, электромагнитные клапаны, двухходовые клапаны или трехходовые клапаны. Клапаны могут приводиться в действие любым средством, включая, в том числе: механическим, электрическим, магнитным, с приводом от кулачкового вала, гидравлическим или пневматическим средством. В большинстве случаев требуются каналы для выпуска, отвода толкающего газа и притока толкающего газа. В тех вариантах осуществления, где желательной концепцией впрыска является непосредственный впрыск, требуются также каналы впрыска и каналы впуска воздуха. В тех вариантах осуществления, где желательной концепцией воспламенения является воспламенение заранее приготовленной смеси от сжатия или искровое зажигание заранее приготовленной смеси, могут также потребоваться каналы впуска воздуха/топлива. В тех вариантах осуществления, где желательной концепцией воспламенения является гибридная концепция впрыска предварительно приготовленной топливовоздушной смеси/непосредственного впрыска топлива с воспламенением от сжатия и/или искровым зажиганием, могут также потребоваться каналы впрыска и каналы впуска воздуха/топлива. Во всех конструкциях двигателей отработавший газ от предыдущего цикла может быть смешан с впускаемыми воздухом или топливовоздушной смесью для протекающего цикла. Этот процесс называется рециркуляцией отработавших газов (EGR) и может использоваться для поддержания в определенных рамках интервалов времени горения и максимальных температур.

Из фиг. 6 также видно, что двигатель 100 содержит также две линейные электромагнитные машины (LEM) электромагнитные машины 200 для непосредственного преобразования кинетической энергии поршневых узлов 120 в электрическую энергию. Каждая LEM 200 способна также преобразовывать электрическую энергию в кинетическую энергию поршневого узла 120 для обеспечения работы сжатия во время такта сжатия. Как видно из фигур, LEM 200 содержит статор 210 и преобразователь 220. При этом преобразователь 220 закреплен к штоку 145 поршня и перемещается прямолинейно внутри статора 210, который является неподвижным. Объем между преобразователем 220 и статором 210 называется воздушным зазором. Возможно любое число вариантов конструктивного исполнения LEM 200. На фиг. 6 показан один вариант конструктивного исполнения, в котором преобразователь 220 короче статора 210. Однако преобразователь 220 может быть и длиннее статора 210 или же они могут иметь по существу одинаковую длину. Кроме того, LEM 200 может представлять собой электрическую машину с постоянными магнитами, асинхронную машину, коммутируемую реактивную электрическую машину или какую-либо комбинацию этих трех машин. И статор 210 и преобразователь 220 могут содержать магниты, катушки индуктивности, сердечник или какую-либо их комбинацию. Ввиду того, что LEM 200 осуществляет непосредственное преобразование кинетической энергии поршней в электрическую энергию и наоборот (то есть механические связи отсутствуют), механические потери и потери от трения минимальны в сравнении с традиционными двигатель-генераторными конструкциями.

Устройство по фиг. 6 работает с использованием двухтактного цикла поршня. Схематический чертеж, поясняющий двухтактный цикл 250 поршня двухпоршневого двигателя 100 со встроенными пневматическими пружинами по фиг. 6, представлен на фиг. 7. В данном описании изобретения термин "цикл поршня" подразумевает любой ряд перемещений поршня, который начинается и заканчивается при по существу одинаковом расположении поршня 125. Типичным примером может служить четырехтактный цикл поршня, который включает такт впуска, такт сжатия, рабочий ход (такт расширения) и такт выпуска. Как указано в описании изобретения, цикл поршня может включать дополнительные чередующиеся такты. Двухтактный цикл поршня отличается тем, что включает рабочий ход (такт расширения) и такт сжатия.

Как видно из фиг. 7, двигатель осуществляет выброс продуктов сгорания (через выпускные каналы 170) и впуск воздуха и/или топливовоздушной смеси или смеси воздуха/топлива/продуктов сгорания (через впускные каналы 180) вблизи BDC в промежутке между рабочим ходом и тактом сжатия. Этот процесс может упоминаться в тексте описания изобретения как "впуск и выпуск" или "впуск и выпуск в BDC или вблизи нее". Специалистам должно быть понятно, что в пределах объема изобретения возможно использование многих других типов конструктивных исполнений системы каналов и впуска и выпуска. При нахождении в BDC или вблизи нее и если приводная секция используется для обеспечения работы сжатия, то давление газа внутри приводной секции 160 выше, чем давление секции 130 сгорания, что побуждает поршни 125 двигаться в направлении внутрь так, что они приближаются друг к другу. Газ, находящийся в секции 160, может использоваться для выработки, по меньшей мере, части энергии, требуемой для выполнения такта сжатия. LEM 200 тоже может вырабатывать часть энергии, требуемой для выполнения такта сжатия.

Количество энергии, требуемое для обеспечения такта сжатия, зависит от требуемой степени сжатия, давления секции 130 сгорания в начале такта сжатия и массы поршневого узла 120. Такт сжатия продолжается до тех пор, пока не возникнет горение, в это время скорость поршня 125 равна нулю или близка к нулю. Момент, в который скорости поршней 125 равны нулю, дает отметку положений их TDC для этого цикла. Горение вызывает повышение температуры и давления внутри секции 130 сгорания, что вызывает перемещение поршня 125 в направлении наружу к LEM 200. Во время рабочего хода часть кинетической энергии поршневого узла 120 преобразуется в электрическую энергию при помощи LEM 200, и другая часть кинетической энергии обеспечивает работу по сжатию газа, находящегося в приводной секции 160. Рабочий ход продолжается до тех пор, пока скорости поршней 125 не станут равными нулю, что дает отметку положений их BDC для этого цикла.

На фиг. 7 показан один вариант схемы расположения каналов для впуска и выпуска, в которой впускные каналы 180 находятся впереди обоих поршней вблизи BDC и выпускные каналы 170 находятся вблизи TDC. Существуют другие возможные варианты расположения каналов, как например, в частности, расположение выпускных каналов 170 впереди одного поршня 125 вблизи BDC и расположение впускных каналов 180 впереди другого поршня 125 вблизи BDC, что обеспечивает так называемую прямоточную продувку или прямоточный впуск и выпуск. Управление открыванием и закрыванием выпускных каналов 170 и впускных каналов 180 осуществляется независимо. Местоположение выпускных каналов 170 и впускных каналов 180 может быть выбрано таким образом, чтобы можно было получить ряд степеней сжатия и/или степеней расширения. Те моменты времени в цикле, когда происходит активация (открывание или закрывание) выпускных каналов 170 и впускных каналов 180, могут быть отрегулированы во время циклов и/или в промежутках между циклами для изменения степени сжатия и/или степени расширения или количества продукта сгорания, удерживаемого в секции 130 сгорания в начале такта сжатия. Удержание рабочих газов, образующихся при сгорании топлива, в секции 130 называется задержанием остаточного газа (RGT) и может использоваться для поддержания в определенных рамках интервалов времени горения и максимальных температур.

Во время цикла поршня газ может перемещаться мимо уплотнений 135 между секцией 130 сгорания и приводной секцией 160. Это перемещение газа называется "прорыв газов". Газ, пропускаемый при прорыве газов, может содержать воздух и/или топливо и/или продукты сгорания. Двигатель 100 спроектирован в расчете на преодоление проблемы прорыва газа за счет наличия по меньшей мере двух каналов в каждой приводной секции 160 - одного канала 185 для отвода толкающего газа и другой канал 190 для обеспечения притока толкающего газа. Отвод толкающего газа и впуск подпиточного толкающего газа регулируются независимым образом и происходят таким образом, чтобы свести к минимуму потери и газа получить максимально возможный КПД.

Фиг. 7 демонстрирует одну концепцию замены толкающего газа, в которой отвод толкающего газа происходит в некоторый момент во время такта расширения и впуск приточного толкающего газа происходит в некоторый момент во время такта сжатия. Отвод и впуск толкающего газа могут также происходить при обратном порядке следования тактов или в течение одного и того же такта. Отведенный толкающий газ может использоваться как часть впуска для секции 130 сгорания в течение протекающего цикла сгорания. Количество газа в приводной секции 160 может регулироваться для изменения степени сжатия и/или степени расширения. Степень расширения определяется как отношение объема секции 130 сгорания, когда поршни 125 имеют нулевую скорость после рабочего такта, к объему секции 130 сгорания, когда поршни 125 имеют нулевую скорость после такта сжатия. Степень сжатия определяется как отношение объема секции 130 сгорания, когда давление внутри секции 130 сгорания начинает повышаться вследствие движения поршней 125 в направлении внутрь, к объему секции 130 сгорания, когда поршни 125 имеют нулевую скорость после такта сжатия.

Оптимальное управление сгоранием достигается за счет понижения (например, охлаждением) температуры газа внутри секции 130 сгорания до начала горения. Регулирование температуры может достигаться путем предварительного охлаждения газа, впускаемого в секцию сгорания, и/или охлаждением внутри секции 130 во время такта сжатия. Оптимальное сгорание происходит тогда, когда объем секции 130 становится таким, при котором тепловой КПД максимален. Этот объем называется оптимальным объемом, и он может иметь место до или после TDC. В зависимости от концепции сгорания (концепция воспламенения и впрыска), впускаемым в секцию сгорания газом может быть воздух, топливовоздушная смесь или смесь воздуха/топлива/продуктов сгорания (где продукты сгорания представляют собой продукты сгорания от EGR и/или использованного повторно толкающего газа), и газом, содержащимся внутри секции 130, может быть воздух, топливовоздушная смесь или смесь воздуха/топлива/продуктов сгорания (где продукты сгорания представляют собой продукты сгорания от EGR и/или RGT и/или повторно использованного толкающего газа).

Когда желательной концепцией воспламенения является воспламенение от сжатия, оптимальное сгорание достигается путем понижения температуры газа внутри секции 130 сгорания так, что он достигает температуры самовоспламенения при оптимальном объеме. Когда желательной концепцией воспламенения является искровое зажигание, оптимальное сгорание достигается путем понижения температуры газа внутри секции 130 сгорания так, что она остается ниже уровня его температуры самовоспламенения до момента образования искры при оптимальном объеме. Управление искрообразованием осуществляется извне, чтобы ее образование происходило при оптимальном объеме. Газ, впускаемый в секцию сгорания, может быть предварительно охлажденным с помощью цикла охлаждения. Газ, содержащийся внутри секции 130, может быть охлажден в период такта сжатия путем впрыска в секцию 130 жидкости, которая потом испаряется. Жидкостью может быть вода и/или другая жидкость, такая как, в частности, топливо или хладагент. Жидкость может быть охлаждена до момента впрыска в секцию 130.

Для данной геометрии двигателя и местоположений выпускных и впускных каналов мощность на выходе двигателя 100 может изменяться от одного цикла к другому путем изменения отношения количества воздуха к количеству топлива и/или количества продуктов сгорания в секции 130 сгорания до начала процесса горения и/или степени сжатия и/или степени расширения. Для данного отношения количества воздуха к количеству топлива в цикле регулирование максимальной температуры горения может осуществляться путем изменения количества продуктов сгорания от предыдущего цикла, которые присутствуют в газе, находящемся в секции сгорания, до начала горения. Продукты сгорания, присутствующие в секции сгорания до начала процесса горения, могут образовываться от EGR и/или RGT и/или из повторно использованного толкающего газа. Синхронизация поршня достигается за счет концепции управления, использующей информацию о положениях поршня, скоростях поршня, состава секции сгорания и давлений цилиндра для настройки рабочих характеристик секций LEM и приводных секций.

Конструкция по фиг. 6 и 7 содержит один агрегат, называемый двигателем 100, образованный цилиндром 105, поршневыми узлами 120 и LEM 200. Однако возможна установка в параллель ряда агрегатов, и вместе их можно назвать как "двигатель". Некоторые варианты осуществления изобретения имеют модульное исполнение, что позволяет организовать их работу в параллель для обеспечения возможности пропорционального увеличения размера двигателя так, как это нужно конечному пользователю. Кроме того, нет необходимости в том, чтобы все агрегаты были одинакового размера или работали в одинаковых условиях (например, частота, стехиометрия или впуск и выпуск). Когда агрегаты работают в параллель, существует возможность объединения двигателей в одно целое, такого, как, в частности, газообмен между агрегатами и/или обратная связь между LEM 200 агрегатов.

Свободнопоршневая структура допускает большие и переменные степени сжатия и расширения при одновременном сохранении достаточно большого объема в TDC, что позволяет свести к минимуму передачу тепла и обеспечить приемлемое сгорание. Кроме того, поршни находятся меньше времени в TDC или вблизи нее, чем это было бы в случае их механической связи с коленчатым валом. Это способствует минимизации передачи тепла (и достижению максимального КПД) вследствие меньшего времени воздействия на них самых высоких температур. Более того, поскольку свободнопоршневая структура не имеет механических связей, механические потери и потери на трение минимальны в сравнении с традиционными двигателями. Большие и переменные степени сжатия и расширения, достаточно большой объем в TDC, непосредственное преобразование кинетической энергии в электрическую энергию при помощи LEM 200, по существу короткое время нахождения в TDC или вблизи нее и возможность управления сгоранием в совокупности обеспечивают достижения в двигателе 100 тепловых КПД свыше 50%.

В число потерь внутри двигателя 100 во время его работы входят: потери при сгорании, потери при теплопередаче, потери при преобразовании электроэнергии, потери при трении и потери при прорыве газов. В некоторых вариантах осуществления изобретения потери при сгорании сведены к минимуму за счет того, сгорание осуществляют при высоких внутренних энергетических состояниях, что обеспечивается за счет наличия возможности достижения высоких степеней сжатия при одновременном понижении температур в секции сгорания. Потери при передаче тепла сводятся к минимуму благодаря тому, что в момент начала горения или близко к этому моменту имеется достаточно большой объем, в результате чего тепловой пограничный слой составляет малую часть объема. Потери при теплопередаче тоже сведены к минимуму за счет того, что при использовании свободнопоршневой конфигурации время пребывания при высокой температуре меньше, чем при использовании конфигурации с кривошипно-шатунным механизмом. Потери на трение сводятся к минимуму благодаря отсутствию механических связей. Потери на прорыв газов сводятся к минимуму за счет того, что есть удачно спроектированные уплотнения поршня и за счет использования толкающего газа, который содержит несгоревшее топливо, как часть впуска для следующего цикла сгорания.

Как упомянуто выше, вариант осуществления, описанный выше со ссылкой на фиг. 6 и 7, представляет собой двухпоршневой двухтактный двигатель 100 внутреннего сгорания с одной секцией сгорания. Ниже описаны альтернативные варианты осуществления изобретения, поясняемые соответствующими фигурами. Эти варианты осуществления изобретения не носят ограничительный характер. Специалистам в данной области техники станут очевидны различные модификации и альтернативные варианты конструктивного исполнения и внесения других изменений в пределах объема изобретения. Если не оговорено особо, физические и рабочие характеристики описанных ниже вариантов осуществления аналогичны физическим и рабочим характеристикам, описанным в варианте осуществления по фиг. 6 и 7, и схожие элементы обозначены соответственно. Кроме того, конструкции всех вариантов осуществления изобретения могут быть скомпонованы в параллель (то есть в многоагрегатные конструкции с пропорционально и равномерно увеличенными размерами), как указано выше.

На фиг. 8 изображен четырехтактный вариант устройства согласно изобретению, представляющий собой двухпоршневой четырехтактный двигатель 300 со встроенными пневматическими пружинами. Основное физическое различие между четырехтактным двигателем 300 по фиг. 8 и двухтактным двигателем 100 по фиг. 6 состоит в том, что в нем предусмотрено определенное местоположение каналов. В частности, в четырехтактном двигателе 300 выпускные, инжекционные и впускные каналы 370 расположены посередине и/или вблизи середины цилиндра 105 между двумя поршнями 125.

На фиг. 9 показан четырехтактный цикл 400 поршня для двухпоршневого двигателя 300 со встроенными пневматическими пружинами по фиг. 8. Отличительной особенностью четырехтактного цикла поршня является наличие рабочего хода (расширения), такта выпуска, такта впуска и такта сжатия. После сгорания начинается рабочий ход, который происходит при оптимальном объеме и продолжается до тех пор, пока скорости поршней 125 не станут равными нулю, что дает отметку положений BDC их рабочего хода для этого цикла.

Во время рабочего хода часть кинетической энергии поршневых узлов 120 преобразуется в электрическую энергию при помощи LEM 200, и другая часть кинетической энергии обеспечивает работу по сжатию газа в приводной секции 160. При нахождении в BDC или вблизи BDC рабочего хода и если при этом приводная секция должна обеспечивать, по меньшей мере, часть работы сжатия, давление газа в приводной секции 160 выше, чем давление газа в секции 130 сжатия, что вынуждает поршни 125 смещаться в направлении внутрь к середине цилиндра 105. В рассматриваемом примере осуществления изобретения газ, находящийся в приводной секции 160, может использоваться для выработки, по меньшей мере, части энергии, требуемой для обеспечения такта выпуска. В некоторых случаях часть энергии, необходимой для обеспечения такта выпуска, может вырабатывать LEM 200. Каналы 370 выпуска открываются в некоторый момент в BDC или вблизи BDC рабочего такта, который может либо предшествовать началу такту выпуска либо следовать за ним. Такт выпуска продолжается до тех пор, пока скорости поршней 125 не станут равными нулю, что дает отметку положений BDC их такта выпуска для этого цикла. Закрытие выпускных каналов 370 происходит в некоторый момент до того как поршни 125 займут свои места, соответствующие TDC такта выпуска. Поэтому в секции 130 сгорания остается, по меньшей мере, часть продуктов сгорания. Этот процесс называется задержанием остаточного газа.

Снова обратимся к фиг. 9. В TDC или вблизи TDC такта выпуска давление камеры 130 сгорания выше, чем давление приводной секции 160, что вызывает перемещение поршней 125 в направлении наружу. Удерживаемый остаточный газ действует как пневматическая пружина, вырабатывая, по меньшей мере, часть энергии, необходимой для обеспечения такта впуска. Часть энергии, требуемой для обеспечения такта впуска, может также вырабатывать LEM 200. Впускные каналы 370 открываются в некоторый момент во время такта впуска после того как давление внутри секции 130 сгорания становится ниже давления впускаемого газа. Такт впуска продолжается до тех пор, пока скорости поршней 125 не станут равными нулю, что дает отметку положений BDC их такта впуска для этого цикла. Положения BDC при такте впуска для данного цикла не обязательно должно быть таким, как положения BDC при рабочем такте. Впускные каналы 370 закрываются в некоторый момент в BDC или вблизи BDC такта впуска. Такт сжатия продолжается до тех пор, пока не возникнет горение, а именно до момента времени, когда скорости поршней 125 становятся равными или почти равными нулю. Местоположения поршней 125, в которых их скорости равны нулю, являются отметками положений TDC их хода сжатия для этого цикла. В TDC или вблизи TDC такта сжатия давление газа в приводной секции 160 выше, чем давление газа в секции 130 сгорания, что вызывает перемещение поршней 125 в направлении внутрь. Газ, находящийся в приводной секции 160, используется для выработки, по меньшей мере, части энергии, необходимой для обеспечения такта сжатия. Часть энергии, требуемой для обеспечения такта сжатия, может также вырабатываться LEM 200.

Фиг. 9 демонстрирует одну концепцию замены толкающего газа, согласно которой удаление толкающего газа происходит в некоторый момент во время такта расширения и впуск подпиточного толкающего газа происходит в некоторый момент во время такта сжатия. Как и в двухтактном варианте устройства согласно изобретению, удаление и впуск толкающего газа может также возникать при обратном порядке следования тактов или во время одного и того же такта. Однако ввиду того, что в четырехтактный вариант конструктивного исполнения согласно изобретению имеет отдельный такт выпуска, для обеспечения которого требуется меньше энергии, чем для обеспечения такта сжатия, может потребоваться другой подход к решению вопроса регулирования количества воздуха в приводной секции 160, в зависимости от того, в какой степени LEM 200 используются для выработки и потребления энергии во время четырех тактов.

На фиг. 10 изображен второй вариант конструктивного исполнения согласно изобретению двухпоршневого двухтактного двигателя 500 внутреннего сгорания с полностью пневматическими пружинами и встроенными линейными электрическими машинами. Аналогично двигателю 100 по фиг. 10, двигатель 500 содержит цилиндр 105, два оппозитных поршневых узла 520 и секцию 130 сгорания, расположенную в центре цилиндра 105. В изображенном устройстве каждый поршней узел 520 содержит два поршня 525, уплотнения 535 поршня и шток 545 поршня. В отличие от предыдущих вариантов осуществления, поршневые узлы 520 и преобразователи 620 полностью расположены внутри цилиндра и LEM 600 (включая статор 610) расположена вокруг наружного периметра цилиндра 105. Поршневые узлы 520 имеют возможность свободного прямолинейного перемещения внутри цилиндра 105. В цилиндре 105 также выполнены каналы 170 выпуска/впрыска, каналы 180 впуска, каналы 185 отвода толкающего газа и каналы 190 притока толкающего газа. В отношении примера устройства согласно изобретению, представленного на фиг. 10, следует отметить, что принцип работы этого устройства с использование двух- или четырехтактного цикла поршня может быть таким, как изложено со ссылкой на фиг.7 и 9.

На фиг. 11 изображен третий пример выполнения согласно изобретению двухпоршневого двухтактного двигателя внутреннего сгорания 700 с одной секцией сгорания и отделимыми пневматическими пружинами. Аналогично двигателю 100 по фиг. 6, двигатель 700 содержит главный цилиндр 105, два оппозитных поршневых узла 120 и секцию 130 сгорания, расположенную в центре цилиндра 705. Однако изображенный двигатель 700 имеет некоторые физические отличия по сравнению с двигателем 100. В частности, двигатель 700 содержит два наружных цилиндра 705, содержащих дополнительные поршни 135, и LEM 200 расположены между главным цилиндром 105 и наружными цилиндрами 705. Каждый наружный цилиндр 705 содержит приводную секцию 710, расположенную между поршнем 125 и дальним концом цилиндра 705, и заднюю приводную секцию 720, расположенную между поршнем 125 и ближним концом цилиндра 705. Кроме того, цилиндр 105 содержит две задние секции 730 сгорания, расположенные между поршнями 125 и дальними концами цилиндра 105. Давление в задней приводной секции 720 и задней секции 730 сгорания поддерживается на уровне или почти на уровне атмосферного давления. Задняя приводная секция 720 практически не герметизирована (а именно опора 740 прямолинейного движения не снабжена газонепроницаемым уплотнением), тогда как задняя секция 730 сгорания герметизирована (а именно посредством уплотнения 150), но имеет каналы для удаления газа, пропущенного в результате прорыва газа (а именно канал 750 для удаления пропущенного газа) и для подпиточного газа (а именно канал 760 для подпиточного воздуха). В изображенной конфигурации каждый поршневой узел 120 содержит два поршня 125, уплотнения 135 поршня, и шток 145 поршня. Поршневые узлы 120 могут беспрепятственно перемещаться прямолинейно между главным цилиндром 105 и наружными цилиндрами 705, как видно из фиг. 11. Штоки 145 поршней движутся вдоль опор и герметизированы газонепроницаемыми уплотнениями 150, закрепленными к главному цилиндру 105. В цилиндре 105 выполнены также каналы 170 выпуска/впрыска и впускные каналы 180. Однако каналы 185 отвода толкающего газа и каналы 190 притока толкающего газа расположены на двух наружных цилиндрах 705, каждый из которых вмещает один из двух поршней 125 каждого поршневого узла 120. Принцип работы устройства согласно изобретению, изображенного на фиг. 11, при использовании двух- или четырехтактного цикла поршня может быть аналогичен изложенному выше при рассмотрении фиг. 7 и 9.

На фиг. 12 изображен один вариант конструктивного исполнения согласно изобретению однопоршневого двухтактного двигателя 1000 со встроенными пневматическими пружинами. При этом двигатель 1000 содержит вертикально расположенный цилиндр 105 с поршневым узлом 120 таких размеров, что он перемещается внутри цилиндра 105 под действием сил реакции, действующих внутри секции 130 сгорания (или камеры сгорания) вблизи нижнего конца цилиндра 105. Для обеспечения устойчивости и сопротивления удару во время горения на нижнем конце вертикально расположенного цилиндра предусмотрена амортизационная пластина 230. Поршневой узел 120 содержит поршень 125, уплотнения 135 поршня и шток 145 поршня. Поршневой узел 120 может беспрепятственно перемещаться прямолинейно внутри цилиндра 105. Шток 145 поршня движется вдоль опор и герметизирован газонепроницаемыми уплотнениями 150, закрепленными к цилиндру 105. В проиллюстрированном варианте осуществления газонепроницаемые уплотнения 150 представляют собой уплотнения штока поршня.

На фиг. 12 объем между обратной стороной поршня 125, штоком 145 поршня и цилиндром 105 называется в данном описании изобретения приводной секцией 160. Приводная секция 160 может также называться в данном описании изобретения "пневматическими пружинами" или "секцией пневматических пружин". Приводная секция 160 изолирована от окружающей среды и секции 130 сгорания уплотнением 150 штока поршня и уплотнениями 135 поршня. В проиллюстрированном варианте осуществления газ, содержащийся в приводной секции 160, во время цикла ведет себя как маховое колесо (а именно как пневматическая пружина), обеспечивая, по меньшей мере, часть работы сжатия во время такта сжатия. Следовательно, особенностью некоторых вариантов осуществления изобретения является использование пневматических пружин для обеспечения работы. Другие варианты осуществления предусматривают использование линейного генератора переменного тока с высоким КПД так, что он выполняет функцию двигателя, и не требуют наличия пневматических пружин для обеспечения работы сжатия.

В некоторых вариантах осуществления для получения высоких тепловых КПД двигатель 1000 имеет переменную степень расширения свыше 50:1. В других вариантах осуществления переменная степень расширения больше, чем 75:1. Еще в одних вариантах осуществления переменная степень расширения больше, чем 100:1. Кроме того, особенностью некоторых вариантов осуществления является то, что степень сжатия равна степени расширения или меньше ее и длина секции сгорания в TDC колеблется в диапазоне 0,1-2 дюйма. В данном описании изобретения выражение "длина секции сгорания в TDC" подразумевает расстояние между головкой секции сгорания и передней стороной поршня 125.

Приведенные выше технические условия предписывают, чтобы длина хода двигателя 1000 была значительно больше, чем в традиционных двигателях, где термин "длина хода" подразумевает расстояние, проходимое поршнем 125 между TDC и BDC. Ход - это расстояние, проходимое поршнем между TDC и BDC. Инициирование процесса горения может достигаться посредством воспламенения от сжатия или искровым зажиганием. Топливо может впрыскиваться в камеру 130 сгорания непосредственно через топливные форсунки ("непосредственный впрыск") и/или может быть смешано с воздухом перед впуском воздуха или во время впуска воздуха ("впрыск с предварительным смешением компонентов"). Двигатель 1000 может работать при сжигании обедненной смеси, стехиометрическом сжигании топлива или сжигании богатой смеси с использованием жидких и/или газообразных топлив.

Из фиг. 12 чертежа также видно, что в цилиндре 105 выполнены каналы 170 выпуска/впрыска, впускные каналы 180, канал 185 отвода толкающего газа и канал 190 притока толкающего газа для обеспечения обмена веществом (твердым веществом, жидкостью, газом или плазмой) с окружающей средой. В данном контексте термин "канал" подразумевает любое отверстие или группу отверстий (например, с пористым материалом), которые обеспечивают обмен веществом между внутренним пространством цилиндра 105 и окружающей его средой. В некоторых вариантах осуществления нужны не все из каналов, показанных на фиг. 12. Количество каналов и их типы зависят от конструкции двигателя, концепции впрыска и цикла поршня (например, двух- или четырехтактные циклы поршня). Для данного однопоршневого двухтактного варианта конструкции согласно изобретению каналы 170 выпуска/впрыска обеспечивают поступления в цилиндр и выхода из него отработавших газов и текучих сред, впускные каналы 180 служат для впуска воздуха и/или топливовоздушных смесей, канал 185 отвода толкающего газа служит для удаления толкающего газа, и канал 190 притока толкающего газа служит для впуска толкающего газа, необходимого для приводной секции 160. Местоположение различных каналов не обязательно должно быть фиксированным. Например, в рассматриваемом примере осуществления изобретения, каналы 170 выпуска/впрыска расположены по существу посередине цилиндра. Однако эти каналы могут быть, в соответствии с другим вариантом, расположены на удалении от середины цилиндра рядом с впускными каналами 180.

Снова обратимся к фиг. 12, где показано, что двигатель 1000 содержит также линейную электромагнитную машину (LEM) 200, предназначенную для преобразования кинетической энергии поршневого узла 120 в электрическую энергию. LEM 200 также способна непосредственно осуществлять преобразование электрической энергии в кинетическую энергию поршневого узла 120 для обеспечения работы сжатия во время такта сжатия. Как видно, LEM 200 содержит статор 210 и преобразователь 220. В частности, преобразователь 220 закреплен к штоку 145 поршня и перемещается прямолинейно внутри статора 210, который неподвижен. Объем, заключенный между преобразователем 220 и статором 210, называется воздушным зазором. LEM 200 может иметь любое число вариантов конструктивного исполнения. На фиг. 6 показан вариант конструктивного исполнения, в котором преобразователь 220 короче, чем статор 210. Однако преобразователь 220 может быть длиннее статора 210 или же они могут быть по существу одинаковой длины. Кроме того, LEM 200 может представлять собой электрическую машину на постоянных магнитах, асинхронную машину, коммутируемую реактивную электрическую машину или какую-либо комбинацию этих трех машин. В состав и статора 210 и преобразователя 220 могут входить магниты, катушки индуктивности, сердечник или какая-либо их комбинация. Ввиду того, что LEM 200 непосредственно осуществляет преобразование кинетической энергии поршней в электрическую энергию и обратное преобразование (то есть механические связи отсутствуют), механические потери и потери на трение минимальны в сравнении с традиционными двигатель-генераторными устройствами.

Устройство согласно изобретению, показанное на фиг. 12, работает с использованием двухтактного цикла поршня. На фиг. 13 представлен схематический чертеж, демонстрирующий двухтактный цикл 1250 поршня однопоршневого двигателя 1000 со встроенными пневматическими пружинами по фиг. 12. Двигатель осуществляет выброс продуктов сгорания (через выпускные каналы 170) и впуск воздуха или топливовоздушной смеси или смеси топлива/воздуха/продуктов сгорания (через впускные каналы 180) вблизи BDC в промежутке между рабочим ходом и тактом сжатия. Этот процесс может здесь называться "впуском и выпуском" или "впуском и выпуском в BDC или вблизи нее". Специалистам в данной области техники станет очевидным, что возможны многие другие типы конструктивного исполнения системы каналов и впуска-выпуска, не выходящих за пределы объема изобретения. При работе в BDC или вблизи нее и если приводная секция должна использоваться для обеспечения работы сжатия, давление газа внутри приводной секции 160 выше, чем давление секции 130 сгорания, что вызывает перемещение поршней 125 в направлении внутрь так, что они приближаются друг к другу. Газ, находящийся в приводной секции 160, может использоваться для выработки, по меньшей мере, части энергии, необходимой для обеспечения такта сжатия. Часть энергии, необходимой для обеспечения такта сжатия, может также вырабатываться LEM 200.

Количество энергии, необходимое для обеспечения такта сжатия, зависит от требуемой степени сжатия, давления секции 130 сгорания в начале такта сжатия и массы поршневого узла 120. Такт сжатия продолжается до тех пор, пока не возникнет горение, что соответствует времени, когда скорость поршня 125 равна или почти равна нулю. Момент равенства нулю скоростей поршней 125 является отметкой положений их TDC для этого цикла. Горение вызывает повышение температуры и давления внутри секции 130 сгорания, что вызывает перемещение поршня 125 в направлении наружу к LEM 200. Во время рабочего хода часть кинетической энергии поршневого узла 120 преобразуется с помощью LEM 200 в электрическую энергию и другая часть кинетической энергии обеспечивает работу по сжатию газа в приводной секции 160. Рабочий ход продолжается до тех пор, пока скорости поршней 125 не станут равными нулю, что является отметкой положений их BDC для этого цикла.

На фиг. 13 представлен одни вариант системы 1300 каналов для впуска и выпуска, в которой впускные каналы 180 расположены впереди поршня вблизи BDC и выпускные каналы 170 расположены вблизи TDC. Управление открыванием и закрыванием выпускных каналов 170 и впускных каналов 180 осуществляется независимо. Местоположение выпускных каналов 170 и впускных каналов 180 может быть выбрано так, что возможно получение ряда степеней сжатия и/или расширения. Те моменты времени в цикле, когда происходит активация (открывание и закрывание) выпускных каналов 170 и впускных каналов 180, могут подстраиваться во время циклов или в промежутках между циклами в целях изменения степени сжатия и/или степени расширения и/или количества продукта сгорания, удерживаемого в секции 130 сгорания в начале такта сжатия. Удерживание рабочих газов, образующихся при сгорании топлива, в секции 130 сгорания называется задержанием остаточного газа (RGT) и может использоваться для поддержания в определенных пределах интервалов времени горения и максимальных температур.

В течение цикла поршня существует вероятность перепуска газа между секцией 130 сгорания и приводной секцией 160 минуя уплотнения 135 поршня. Этот перепуск газа называется "прорывом газа". Просочившийся газ может содержать воздух и/или топливо и/или продукты сгорания. Двигатель 1000 спроектирован в расчете на устранение проблемы прорыва газа за счет введения двух каналов в приводную секцию 160 - одного канала 185 для удаления толкающего газа и другого канала 190 для обеспечения притока толкающего газа. Управление удалением толкающего газа и впуском подпиточного толкающего газа осуществляется независимо и происходит таким образом, что потери сводятся к минимуму и достигается максимальный КПД.

Фиг. 13 демонстрирует принцип замены толкающего газа, предполагающий удаление толкающего газа в некоторый момент во время такта расширения и впуск подпиточного толкающего газа в некоторый момент во время такта сжатия. Удаление и впуск толкающего газа может также происходить при обратном порядке следования тактов или в течение одного и того же такта. Отведенный толкающий газ может использоваться как часть впуска для секции 130 сгорания во время протекающего цикла двигателя внутреннего сгорания. Количество газа в приводной секции 160 может регулироваться с тем, чтобы изменять степень сжатия и/или степень расширения. Степень расширения определяется как отношение объема секции 130 сгорания в то время, когда поршень 125 имеет нулевую скорость после рабочего хода, к объему секции 130 сгорания в то время, когда поршень 125 имеет нулевую скорость после такта сжатия. Степень сжатия определяется как отношение объема секции 130 сгорания в то время, когда давление внутри секции 130 сгорания начинает увеличиваться вследствие движения поршня 125 в направлении внутрь, к объему секции 130 в то время, когда поршень 125 имеет нулевую скорость после такта сжатия.

Устройство по фиг. 12 и 13 состоит из одного агрегата, именуемого как двигатель 1000, образованного цилиндром 105, поршневым узлом 120 и LEM 200. Однако можно установить в параллель ряд агрегатов, которые вместе можно называть "двигателем". Некоторые варианты осуществления изобретения имеют модульное исполнение, что дает возможность компоновать их для работы в параллель для обеспечения возможности пропорционального увеличения размера двигателя так, как это нужно конечному пользователю. Кроме того, нет необходимости в том, чтобы все агрегаты были одинакового размера или работали в одинаковых условиях (например, при одинаковых частоте, стехиометрии или впуске и выпуске). Когда агрегаты работают в параллель, существует возможность объединения двигателей в одно целое, как например, в частности, путем реализации газообмена между агрегатами и/или обратной связи между LEM 200 агрегатов.

Как указано, пример осуществления изобретения, описанный выше со ссылкой на фиг. 12 и 13, представляет собой однопоршневой двухтактный двигатель 1000 внутреннего сгорания с одной секцией сгорания. Ниже описано несколько альтернативных вариантов осуществления изобретения, проиллюстрированных соответствующими фигурами чертежей. Эти варианты осуществления изобретения не имеют в виду ограничение объема изобретения. Специалистам в данной области техники станут очевидны различные модификации и другие варианты конструктивного исполнения и внесение других изменений, которые не выходят за пределы объема изобретения. Если не оговорено особо, физические и рабочие характеристики описанных ниже вариантов осуществления изобретения аналогичны физическим и рабочим характеристикам, описанным при рассмотрении примера осуществления изобретения по фиг. 12 и 13, и схожие элементы имеют соответствующие обозначения. Кроме того, все варианты осуществления изобретения могут быть скомпонованы в параллель (то есть с образованием многоагрегатных конструкций для пропорционального увеличения размеров), как указано выше.

На фиг. 14 представлен четырехтактный вариант устройства согласно изобретению, выполненного в виде однопоршневого четырехтактного двигателя 1400 со встроенными пневматическими пружинами. Главное физическое различие между четырехтактным двигателем 1400 по фиг. 14 и двухтактным двигателем 1000 по фиг. 12 состоит в местоположении каналов. В частности, в четырехтактном двигателе 1400 каналы 370 выпуска, впрыска и впуска расположены в нижней части или вблизи нижней части цилиндра 105 рядом с амортизационной пластиной 230.

На фиг. 15 показан четырехтактный цикл 1500 однопоршневого двигателя 1400 со встроенными пневматическими пружинами по фиг. 14. Четырехтактный цикл поршня характеризуется тем, что он имеет рабочий ход (такт расширения), такт выпуска, такт впуска и такт сжатия. Вслед за сгоранием начинается рабочий ход, который происходит при оптимальном объеме и продолжается до тех пор, пока скорость поршня 125 не станет равной нулю, что дает отметку положения BDC рабочего хода для этого цикла.

Во время рабочего хода часть кинетической энергии поршневого узла 120 преобразуется при помощи LEM 200 в электрическую энергию, и другая часть кинетической энергии обеспечивает работу по сжатию газа, находящегося в приводной секции 160. При работе в BDC или вблизи BDC рабочего хода и если при этом приводная секция должна обеспечивать, по меньшей мере, часть работы сжатия, давление газа в приводной секции 160 выше, чем давление газа в секции 130 сгорания, что вызывает перемещение поршня 125 в направлении внутрь к середине цилиндра 105. В рассматриваемом примере осуществления изобретения газ, находящийся в приводной секции 160, может использоваться для выработки, по меньшей мере, части энергии, необходимой для обеспечения такта выпуска. В некоторых случаях часть энергии, необходимой для обеспечения такта выпуска, может вырабатываться LEM 200. Выпускные каналы 370 открываются в некоторый момент в BDC рабочего хода или вблизи нее, и это может происходить до или после начала такта выпуска. Такт выпуска продолжается до тех пор, пока скорость поршня 125 не станет равной нулю, что дает отметку положения TDC такта выпуска для этого цикла. Выпускные каналы 370 закрываются в некоторый момент до достижения поршнем 125 положения TDC его такта выпуска. Поэтому, по меньшей мере, часть продуктов сгорания остается в секции 130 сгорания. Этот процесс называется задержанием остаточного газа.

В отношении примера осуществления изобретения, представленного на фиг. 15, следует добавить, что в TDC или вблизи TDC такта выпуска давление секции 130 сгорания выше, чем давление приводной секции 160, что вызывает движение поршня 125 в направлении вверх. Захваченный остаточный газ действует как пневматическая пружина, вырабатывая, по меньшей мере, часть энергии, необходимой для обеспечения такта впуска. Часть энергии, необходимой для обеспечения такта впуска, может также вырабатываться LEM 200. Впускные каналы 370 открываются в некоторый момент во время такта впуска после понижения давления внутри секции 130 сгорания ниже уровня давления впускаемого газа. Такт впуска продолжается до тех пор, пока скорость поршня 125 не станет равной нулю, что дает отметку положения BDC такта впуска для этого цикла. Положение BDC такта впуска для данного цикла не обязательно должно быть таким, как положение BDC такта впуска рабочего хода. Впускные каналы 370 закрываются в некоторый момент в BDC такта впуска или вблизи нее. Такт сжатия продолжается до тех пор, пока не возникнет горение, которое возникает в то время, когда скорость поршня 125 равна или почти равна нулю. Местоположение поршня 125, в котором его скорость равна нулю, дает отметку положения TDC его такта сжатия для этого цикла. В TDC или вблизи TDC такта сжатия давление газа, находящегося в приводной секции 160, выше, чем давление газа в секции 130 сгорания, что вызывает перемещение поршня 125 в направлении вниз. Газ, находящийся в приводной секции 160, используется для выработки, по меньшей мере, части энергии, необходимой для обеспечения такта сжатия. Часть энергии, необходимой для обеспечения такта сжатия, может также вырабатываться LEM 200.

Фиг. 15 демонстрирует принцип замены толкающего газа, согласно которому удаление толкающего газа происходит в некоторый момент во время такта сжатия. Как и в двухтактном варианте устройства согласно изобретению, удаление и впуск толкающего газа могут происходить при обратном порядке следования тактов или во время одного и того же такта. Однако ввиду того, что четырехтактный вариант устройства согласно изобретению имеет отдельный такт выпуска, который требует меньшей затраты энергии, чем такт сжатия, может потребоваться другой подход к решению вопроса регулирования количества воздуха в приводной секции 160, зависящий оттого, в какой степени LEM 200 используется для выработки и потребления энергии в течение четырех тактов.

На фиг. 16 изображен второй вариант конструктивного исполнения согласно изобретению однопоршневого двухтактного двигателя внутреннего сгорания с полностью пневматическим пружинами и встроенной линейной электрической машиной, представленный двигателем 1600 внутреннего сгорания. Двигатель 1600 содержит цилиндр 105, поршневой узел 520 и секцию 130 сгорания. В изображенном устройстве поршневой узел 520 содержит два поршня 525, уплотнения 535 поршня и шток 545 поршня. В отличие от предыдущих вариантов осуществления изобретения, поршневой узел 120 и преобразователь 620 целиком установлены внутри цилиндра и LEM 600 (включая статор 610) расположена вокруг наружного периметра цилиндра 105. Поршневой узел 520 имеет возможность свободного прямолинейного перемещения внутри цилиндра 105. Кроме того, в цилиндре 105 выполнены каналы 170 выпуска/впрыска, впускные каналы 180, каналы 185 отвода толкающего газа и каналы 190 притока толкающего газа. Принцип действия устройства согласно изобретению, изображенного на фиг. 16, с использованием двух- или четырехтактного цикла поршня такой же, как описанный выше.

На фиг. 17 изображен третий вариант конструктивного исполнения согласно изобретению двухпоршневого двухтактного двигателя внутреннего сгорания с одной секцией сгорания и отделимыми пневматическим пружинами, представленный двигателем 1700 внутреннего сгорания. Аналогично двигателю 1000, двигатель 1700 содержит главный цилиндр 105, поршневой узел 120 и секцию 130 сгорания. Однако двигатель 1700 имеет определенные физические отличия в сравнении с двигателем 1000. В частности, двигатель 1700 содержит наружные цилиндры 705, вмещающие дополнительный поршень 125, и LEM 200 расположена между главным цилиндром 105 и наружным цилиндром 705. Наружный цилиндр 705 содержит приводную секцию 710, расположенную между поршнем 125 и дальним концом цилиндра 705, и заднюю приводную секцию 720, расположенную между поршнем 135 и ближним концом цилиндра 705. Кроме того, цилиндр 105 содержит заднюю секцию 730 сгорания, расположенную между поршнем 135 и дальним концом цилиндра 105. Давление в приводной секции 720 и секции 730 сгорания поддерживается равным или почти равным атмосферному давлению. Задняя приводная секция 720 по существу не герметизирована (имеется ввиду, что опора 740 прямолинейного движения не снабжена никаким газонепроницаемым уплотнением), тогда как задняя секция 730 сгорания герметизирована (при помощи уплотнения 150), но имеет каналы для удаления газа, просочившегося при прорыве газа (а именно канал 750 для отвода просочившегося газа) и для подпиточного газа (а именно канал 760 для подпиточного воздуха). В изображенном устройстве поршневой узел 120 содержит два поршня 125, уплотнения 135 поршня и шток 145 поршня. Поршневой узел 120 имеет возможность свободного прямолинейного перемещения между главным цилиндром 105 и наружным цилиндром 705. Шток 145 поршня движется вдоль опор и герметизирован при помощи газонепроницаемых уплотнений 150, закрепленных к главному цилиндру 105. Кроме того, в цилиндре 105 выполнены каналы 170 выпуска/впрыска и впускные каналы 180. Однако каналы 185 отвода толкающего газа и каналы 190 притока толкающего газа расположены на наружном цилиндре 705, вмещающем один из двух поршней 125 поршневого узла 120. Принцип действия этого предложенного устройства с использованием двух- или четырехтактного цикла поршня такой же, как описанный выше.

Описанные выше варианты осуществления изобретения представляют собой однопоршневые и двухпоршневые устройства, включающие в себя: (i) встроенную пневматическую пружину и отделимую линейную электрическую машину (фиг. 6-9 и 12-15), (ii) полностью встроенные пневматическую пружину и линейную электрическую машину (фиг. 10 и 16), и (iii) отделимые пневматическую пружину и линейную электрическую машину (фиг. 11 и 17). Фиг. 18-20 поясняют другие варианты осуществления изобретения, особенностью которых является наличие встроенных внутрь пневматических пружин, в которых пневматическая пружина встроена внутрь поршня и линейная электрическая машина (LEM) выполнена отдельно от цилиндра камеры сгорания. В таблицу 1 сведены ключевые различия между четырьмя структурами, рассмотренными в данном описании изобретения, в том числе:

Встроенная внутрь пневматическая пружина

Как видно из фиг. 18-20 и сведено в таблицу 1, конструкция со встроенной внутрь пневматической пружиной (IIGS) аналогична по длине структуре со встроенной пневматической пружиной и выполненной отдельно от нее LEM, изображенной на фиг. 6-9 и 12-15. Однако конструкция IIGS устраняет проблемы, связанные с перепуском газов из секции сгорания в пневматическую пружину, который имеет также место в конструкции с полностью встроенными пневматической пружиной и LEM.

На фиг. 18 представлен вид в разрезе однопоршневого двухтактного варианта IIGS конструкцией в соответствии с примером осуществления изобретения. Многие компоненты, как например секция 130 сгорания, аналогичны компонентам предыдущих вариантов осуществления изобретения (например, по фиг. 12) и имеют соответствующие обозначения. Двигатель 1800 содержит вертикально расположенный цилиндр 105 с поршневым узлом 1820 таких размеров, что он может перемещаться внутри цилиндра 105 под действием сил реакции, действующих внутри секции 130 сгорания вблизи нижнего конца цилиндра 105. Для обеспечения устойчивости и сопротивления удару во время процесса горения на нижнем конце вертикально расположенного цилиндра может быть предусмотрено наличие амортизационной пластины. Поршневой узел 1820 содержит поршень 1830, уплотнения 1835 поршня и пружинный шток 1845. Поршневой узел 1820 имеет возможность свободного прямолинейного перемещения внутри цилиндра 105. Шток 1845 поршня движется вдоль опор и герметизирован газонепроницаемыми уплотнениями 150, закрепленными к цилиндру 105. В проиллюстрированном варианте осуществления газонепроницаемые уплотнения 150 представляют собой уплотнения штока поршня. В цилиндре 105 выполнены каналы 1870, 1880 выпуска/впрыска, предназначенные для впуска воздуха, топлива, отработавших газов, топливовоздушных смесей и/или смесей воздух/отработавшие газы/топливо, выпуска продуктов сгорания и/или инжекторы. В некоторых вариантах осуществления нужны не все из показанных на фиг.18 каналов. Количество каналов и их типы зависят от конструкции двигателя, концепции впрыска и цикла поршня (например, двух- или четырехтактные циклы).

В рассматриваемом примере осуществления изобретения двигатель 1800 содержит также LEM 1850 (включая статор 210 и магниты 1825), предназначенную для непосредственного преобразования кинетической энергии поршневого узла 1820 в электрическую энергию. LEM 1850 может также осуществлять непосредственное преобразование электрической энергии в кинетическую энергию поршневого узла 1820 для обеспечения работы сжатия во время такта сжатия. LEM 1850 может представлять собой электрическую машину с постоянными магнитами, асинхронную электрическую машину, коммутируемую реактивную электрическую машину или какую-либо комбинацию этих трех машин. В состав статора 210 могут входить магниты, катушки индуктивности, сердечник или какая-либо комбинация этих элементов. Ввиду того, что LEM 1850 осуществляет непосредственное преобразование кинетической энергии поршней в электрическую энергию и наоборот (то есть отсутствуют механические связи), механические потери и потери на трении минимальны в сравнении с традиционными двигатель-генераторными конструкциями.

Из фиг. 18 также видно, что поршень 1830 содержит сплошную переднюю часть (сторона камеры сгорания) и полую заднюю часть (сторона пневматической пружины). Зона внутри полой части поршня 1830 между лицевой (передней) стороной поршня и пружинным штоком 1845 вмещает газ, выполняющий функцию пневматической пружины 160, которая обеспечивает, по меньшей мере, часть работы, необходимой для обеспечения такта сжатия. Поршень 1830 движется прямолинейно внутри секции 130 сгорания и статора 210 LEM 1850. Направляющими для движения поршня служат опоры 1860, 1865, которыми могут быть твердотельные опоры, гидравлические опоры и/или воздушные опоры. В рассматриваемом примере осуществления изобретения двигатель 1800 содержит как наружные опоры 1860, так и внутренние опоры 1865. В частности, наружные опоры 1860 расположены между секцией 130 сгорания и LEM 1850, и внутренние опоры 1865 расположены на внутренней стороне полой части поршня 1830. Наружные опоры 1860 зафиксированы с внешней стороны и не перемещаются вместе с поршнем 1830. Внутренние опоры 1865 прикреплены к поршню 1830 и движутся вместе с поршнем 1830 относительно пружинного штока 1845.

Из фиг. 18 также видно, что пружинный шток 1845 образует одну наружную поверхность для пневматической пружины 160 и зафиксирован с наружной стороны. Пружинный шток 1845 имеет, по меньшей мере, одно уплотнение 1885, расположенное на его конце или вблизи его конца, которое служит в целях удержания газа внутри пневматической пружинной секции 160. Магниты 1825 прикреплены к задней стороне поршня 1830 и перемещаются прямолинейно вместе с поршнем 1830 внутри статора 210 LEM 1850. Поршень 1830 имеет уплотнения 1835 для удерживания газов в соответствующих частях устройства. Изображенный вариант осуществления содержит (i) передние уплотнения, прикрепленные к поршню 1830 на его переднем конце или вблизи него, препятствующие перепуску газов из секции 130 сгорания, и (ii) задние уплотнения, прикрепленные к цилиндру 105 и препятствующие поступлению в окружающую среду впускаемых газов и/или газов, просочившихся при прорыве газов.

На фиг. 19 представлен вид в разрезе узла 1900 пружинного штока 1845 в виде пневматической пружины в соответствии с принципами изобретения. В частности, пружинный шток 1845 заключает в себе центральный просвет 1910, обеспечивающий перенос массы между пневматической пружинной секцией 160 и коллекторной зоной 1920, сообщающейся с окружающей средой. Связь с окружающей средой контролируется посредством клапана 1930. Величина массы в пневматической пружине 1845 регулируется для регулирования давления внутри пневматической пружины 1845 таким образом, чтобы обеспечить использование достаточной работы сжатия для следующего цикла поршня.

На фиг. 20 представлен вид в разрезе двухпоршневого двухтактного варианта двигателя 2000 со встроенной внутрь пневматической пружиной (IIGS) в соответствии с примером осуществления изобретения. Многие элементы двухпоршневого варианта осуществления аналогичны элементам однопоршневого варианта осуществления по фиг. 18, и схожие элементы имеют соответствующие обозначения. Кроме того, рабочие характеристики одно- и двухпоршневого вариантов конструктивного исполнения согласно изобретению аналогичны описанным в предыдущих вариантах осуществления, включая все особенности линейного генератора переменного тока, впуска и выпуска, концепции сжигания и т.д.

Следует понимать, что описанные выше различные варианты осуществления настоящего изобретения служат исключительно для пояснения изобретения на примерах его осуществления, но не ограничивают объем изобретения. Аналогично этому, различные приведенные схематические чертежи могут показывать пример структурного или другого конструктивного построения устройства, предлагаемого согласно изобретению, чтобы помочь понять признаки и функциональные возможности, которые могут быть заключены в изобретении. Изобретение не ограничивается показанными на фигурах чертежей примерами структурного или схемотехнического построения, во всяком случае, требуемые признаки могут быть реализованы с использованием целого ряда альтернативных структурных и схемотехнических конструктивных решений. Специалистам в области техники, к которой относится изобретение, должно быть, без сомнения, понятно, как можно практически осуществить альтернативные функциональное, логическое или физическое структурное разбиение и конструктивные схемные решения для реализации необходимых признаков настоящего изобретения. К тому же, различным составляющим элементам могут быть присвоено много других названий различных составляющих модулей, отличающихся от тех, которые приведены в данном описании изобретения. Кроме того, в отношении заявленных последовательностей операций, описаний работы и способов следует отметить, что соблюдение порядка следования этапов, представленного в данном описании изобретения, не является обязательным для реализации в различных вариантах изобретения перечисленных функциональных возможностей, если в контексте не оговорено особо.

Хотя изобретение описано выше на различных примерных вариантов осуществления, следует понимать, что различные признаки, особенности и функциональные возможности, описанные в одном или нескольких отдельных вариантах осуществления, не ограничиваются возможностью их применения к конкретному примеру осуществления, в связи с которым они описаны, напротив, они могут быть применены, самостоятельно или в различных комбинациях, к одному или нескольким другим вариантам осуществления изобретения, независимо от того, описаны или нет такие варианты осуществления изобретения, и независимо от того, представлены такие признаки или же не представлены как составляющая часть описанного примера осуществления изобретения. Таким образом, объем притязаний настоящего изобретения не ограничивается никаким из вышеописанных вариантов осуществления изобретения.

Технические термины и выражения, используемые в данном документе, и их варианты должны рассматриваться как допускающие изменения, а не как носящие ограничительный характер. Примеры вышесказанного: термин "содержащий" подразумевает "содержащий без ограничения" или что-либо подобное; термин "пример" используется для показа примеров предмета рассмотрения, а не для представления исчерпывающего или ограничивающего перечня для этого примера; слова в единственном числе следует должны быть прочитаны как означающие "по меньшей мере один", "один или несколько" и т.п.; и имена прилагательные, такие как "общепринятый", "традиционный", "нормальный", "стандартный", "известный" и термины, имеющие аналогичное значение, не следует рассматривать как ограничивающие описываемую позицию определенным периодом времени или позицией, доступной в данное время, но вместо этого следует рассматривать как охватывающие традиционные, нормальные или стандартные технологии, которые могут быть доступны или известны в настоящее время или в любое время в будущем. Аналогично этому, в тех случаях, где в данном документе в отношении технологий указывается, что они должны быть очевидными или известными специалисту в данной области техники, имеется ввиду, что это те технологии, которые очевидны для специалиста в данной области техники или известны ему в настоящее время или же станут очевидными для него или известными ему в любое время в будущем.

Присутствие расширяющих слов или выражений, таких как "один или несколько" "по меньшей мере", "в частности" или других похожих выражений в отдельных примерах не должно рассматриваться как означающее необходимость присутствия более ограниченного случая в тех примерах, где такие расширяющие выражения могут отсутствовать. Использование термина "модуль" не означает, что все компоненты или функции, описанные или заявленные как часть модуля, выполнены в общем корпусе. Фактически любые или все различные компоненты модуля, то ли логические схемы управления, то ли другие компоненты, могут быть объединены в одном корпусе или могут содержаться отдельно друг от друга и затем могут быть распределены на ряд групп или корпусов или по ряду мест.

Следует добавить, что изложенные здесь различные варианты осуществления изобретения описаны с помощью примерных структурных схем, временных диаграмм и других иллюстраций. После ознакомления с текстом данного документа специалисту должно быть понятно, что средства реализации рассматриваемых вариантов осуществления изобретения и различных их модификаций или вариантов могут быть шире, чем это показано в примерах, приведенных на фигурах чертежей. Например, структурные схемы и прилагаемое к ним описание не следует рассматривать как делающие обязательными конкретную структуру или конкретное конструктивное исполнение.














Двухтактный двигатель внутреннего сгорания с магнитным преобразованием движения

Сухаревский Владимир Владимирович
Компания "Ланмотор"
г. Москва, кандидат физико-математических наук, ведущий научный сотрудник

Sukharevsky Vladimir Vladimirovich
Lanmotor company
Moscow, PhD in Physics, leading researcher

Библиографическая ссылка на статью:
Сухаревский В.В. Двухтактный двигатель внутреннего сгорания с магнитным преобразованием движения // Современные научные исследования и инновации. 2016. № 11 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2016/11/74548 (дата обращения: 17.12.2021).

Новый тип двигателей внутреннего сгорания с магнитным бесконтактным преобразованием движения –перспективное направление развития ДВС. Автором предлагается трехцилиндровый двухтактный двигатель с двумя магнитными преобразователями возвратно-поступательного движения во вращательное движение.

Известен двухтактный двухцилиндровый двигатель внутреннего сгорания с магнитным преобразованием движения, имеющий пару магнитных преобразователей возвратно-поступательного движения во вращательное движение [1]. Каждый преобразователь в [1] содержит вращающийся ротор и два штока, двигающихся возвратно-поступательно в противофазе.

Использование бесконтактного магнитного преобразователя возвратно-поступательного движения во вращательное движение позволяет, как показано в [2], использовать в двигателе на его основе высокие степени сжатия без негативных последствий для узлов и механизмов двигателя.

Однако, в конструкции [1] двигателя с магнитным преобразованием движения имеются следующие недостатки:

- штанги, соединяющие штоки, двигающиеся синхронно, из-за несовпадения осей цилиндров, создают изгибающую силу, действующую на штоки, которая приводит к повышенному трению и возможному заклиниванию штоков,

- магнитная сила, притягивающая магнит штока к магниту ротора в радиальном направлении, не скомпенсирована и передается на направляющие штоков,

- при изменениях температуры двигателя в процессе работы может нарушаться параллельность цилиндров, что также ведет к повышенному трению и возможному заклиниванию штоков и/или поршней.

Фиг. 1 Простейший преобразователь по [3] с роторами 4 с магнитами роторов 1, полюса магнитов роторов 7, обращенные к штоку 3 расположены вдоль линии 5, имеющей один минимум и один максимум в направлении осей штоков 3. Показаны линии 5 по верхнему краю магнитных полюсов 7, с минимумом и максимумом по оси Z, параллельной осям штоков 3 и роторов 4. Магнит штока 2 расположен в средней части штока 3, полюса магнитов штока 6 обращены к полюсам магнитов ротора 7.

Известен магнитный бесконтактный преобразователь возвратно-поступательного движения во вращательное движение [3], который содержит:

- пару роторов, вращающихся в противоположных направлениях вокруг одной оси, и не имеющих возможности перемещаться вдоль этой оси, с закрепленными на указанных роторах магнитами ротора,

- шток, движущийся возвратно-поступательно вдоль оси вращения ротора, с закрепленным на указанном штоке магнитом штока, с полюсами, обращенными к полюсам магнитов роторов,

- одноименные полюса магнитов роторов, обращенные к штокам, расположены вдоль замкнутых линий, имеющих в направлении оси вращения ротора локальный максимум и локальный минимум,

- форма и размеры указанных замкнутых линий таковы, что при достижении штоком верхней мертвой точки все полюса магнитов штока достигают максимумов указанных линий полюсов магнитов обоих роторов, а при достижении штоком нижней мертвой точки, все полюса магнитов штока достигают минимумов указанных линий полюсов магнитов обоих роторов.

Фиг.2 Вариант изготовления магнитов ротора 1, набираемых из магнитных пластин, с полюсами 7 направленными к оси ротора 4.

Симметрия замкнутых линий полюсов магнитов роторов и полюсов штока относительно оси ротора приводит к компенсации вращающих моментов, вектор которых перпендикулярен оси ротора, и соответственно, приводит к уменьшению трения. Также, компенсируются силы магнитного натяжения в направлениях, перпендикулярных оси ротора, что также уменьшает трение в направляющих штока.


Фиг.3 Вариант изготовления ротора 4 с наборным магнитом ротора 1.


Фиг.4 Вариант изготовления штока 3 с магнитами 2 с полюсами 6.


Фиг.5 Схема работы магнитной системы преобразователя, шток 3 с магнитами 2 движется возвратно-поступательно, магниты 1 различных роторов вращаются в противоположных направлениях.

Раскрытие изобретения

Технический результат изобретения заключается в создании двухтактного двигателя внутреннего сгорания с магнитным преобразованием движения.

Двухтактный двигатель внутреннего сгорания с магнитным преобразованием движения, имеющий пару магнитных преобразователей возвратно-поступательного движения во вращательное движение, каждый из которых имеет:

- пару роторов, вращающихся в противоположных направлениях вокруг одной оси, и не имеющих возможности перемещаться вдоль этой оси, с закрепленными на указанных роторах магнитами ротора,

- шток, движущийся возвратно-поступательно вдоль оси вращения ротора, с закрепленным на указанном штоке магнитом штока, с полюсами, обращенными к полюсам магнитов роторов,

- одноименные полюса магнитов роторов, обращенные к штокам, расположены вдоль замкнутых линий, имеющих в направлении оси вращения ротора локальный максимум и локальный минимум,

- форма и размеры указанных замкнутых линий таковы, что при достижении штоком верхней мертвой точки все полюса магнитов штока достигают максимумов указанных линий полюсов магнитов обоих роторов, а при достижении штоком нижней мертвой точки, все полюса магнитов штока достигают минимумов указанных линий полюсов магнитов обоих роторов,

- все поршни и штоки, движущиеся синхронно, жестко соединены,

- по крайней мере, два ротора различных указанных преобразователей синхронизированы между собой,

отличающийся тем, что:

- имеет три цилиндра, на одной оси со штоками и роторами указанных преобразователей,

- такт сжатия в центральном цилиндре соответствует такту расширения в крайних цилиндрах.

Фиг. 6 Схема двигателя по Модификации 1. Двигатель включает два преобразователя 8 возвратно-поступательного движения во вращательное, поршни 9, центральный цилиндр 10, крайние цилиндры 11 с клапанами 12. Продувка осуществляется через продувочные окна 13 или клапана 12, выпуск – через выпускные окна 14. Роторы 4 каждого преобразователя 10 вращаются в противоположные стороны. Два ротора 4, вращающихся в одну сторону, ремённой передачей 15 соединены с выходным валом 16.

Расположение всех цилиндров на одной оси с роторами и штоками устраняет изгибающие силы в двигателе.

Синхронизация по крайней мере двух роторов различных преобразователей дает синхронизацию встречно-движущихся поршней, что необходимо для нормальной работы двигателя.

Синхронизация вращения роторов в одном направлении может обеспечиваться, например, ремённой или шестеренчатой или цепной передачей с роторов на общий вал.

Раскрытое выше изобретение может быть изготовлено в различных модификациях.

Модификация 1. Раскрытый выше двигатель, у которого:

- в центральном цилиндре прямоточная бесклапанная продувка и два встречно-движущихся поршня соединены каждый со штоком разных указанных преобразователей,

- в крайних цилиндрах по одному поршню, каждый из которых соединен со штоком разных указанных преобразователей, клапанно-щелевая либо бесклапанная петлевая продувка.

Модификация 2. Раскрытый выше двигатель, у которого:

- во всех цилиндрах по два встречно-движущихся поршня и бесклапанная прямоточная продувка,

- штоки преобразователей соединены каждый с одним поршнем крайнего цилиндра и с помощью штанг с движущимися с ними синхронно поршнями центрального цилиндра.

В двигателе по Модификации 1 роль клапанов в крайних цилиндрах может играть гильзовый газораспределительный механизм.

Топливовоздушная смесь в цилиндрах может самовоспламеняться, либо поджигаться искрой. Например, в двигателе по Модификации 1 в центральном цилиндре – самовоспламенение, в крайних цилиндрах – воспламенение искрой.

В двигателе по Модификации 2 центральный цилиндр преимущественно имеет вдвое большую площадь сечения, нежели крайние цилиндры, а в двигателе по Модификации 1 площади сечения всех цилиндров преимущественно одинаковы. Вращающий момент выходного вала в таком случае более равномерный.

Боковая поверхность поршня или весь поршень может быть изготовлен из графита, а цилиндры изготовлены из сплава с заданным коэффициентом температурного расширения, равным коэффициенту температурного расширения графита поршня в радиальном направлении, т.е. в направлении от оси цилиндра к стенкам цилиндра.

Указанный двигатель используется в транспортном средстве, и/или генераторной установке, которая в свою очередь используется в транспортном средстве или для выработки электроэнергии на электростанции.

Генераторная установка, использующая предложенный двигатель, может использовать в качестве электрогенератора, например, синхронную электрическую машину.

Транспортное средство, использующее двигатель с преобразователями по настоящему изобретению или генераторную установку, использующую двигатель по настоящему изобретению, может быть воздушным, водным, сухопутным.

В автомобиле двигатель с предложенным преобразователем благодаря его вытянутой форме можно устанавливать в центральном тоннеле кузова и использовать, например, в составе генераторной установки.

Двигатель, генераторная установка и электростанция, по настоящему изобретению, может использовать различное жидкое или газообразное топливо, преимущественно углеводородное.


Фиг.7 Внутренняя часть варианта изготовления трехцилиндрового двигателя с противоположным движением поршней 9 по Модификации 2. Движущиеся синхронно штоки 3 с поршнями 9 жестко соединены штангами 17. Показана магнитная система преобразователей 8, с замыкающими магнитопроводами ротора 18.

ФИГ.8 Один из возможных вариантов изготовления трехцилиндрового двигателя, с корпусом в виде полого каркаса 19 соединенного с впускными коллекторами 20. Корпуса 21 подшипников роторов соединены с коллекторами 20. На цилиндрах 10, 11 установлены выпускные коллекторы 22. Вспомогательные системы двигателя, такие как стартер, продувочный компрессор, форсунки, система управления впрыском, не показаны.

Осуществление изобретения.

На Фиг. 6 представлена схема предложенного двигателя по Модификации 1.

Для пуска двигателя желательно придать валу отбора мощности 16 начальное вращение в необходимом направлении, на тот случай, если штоки 3 находятся в мертвых точках и направление движения роторов 4 при начале их движения не определено. Пуск можно осуществлять подачей сжатого воздуха компрессором попеременно в центральный цилиндр 10 и крайние цилиндры 11, либо путем вращения выходного вала 16 стартером (на фиг.6-8 стартер и компрессор не показаны)

Во время хода поршней 9 роторы 4 под действием магнитной силы взаимодействия магнитов штоков 2 и магнитов роторов 1 вращаются. Корпус, топливная система, продувочный компрессор на Фиг.6 не показаны.

Изображенный на Фиг.6 вариант двигателя (Модификация 1) наглядно демонстрирует принцип работы предлагаемого двигателя, имеет высокую эффективность, но использует петлевую или клапанно-щелевую продувку. Наличие клапанов 12 предполагает наличие системы газораспределения (на Фиг.6 не показана), например, электронной, что существенно удорожает конструкцию. При петлевой продувке клапана 12 отсутствуют, а часть выпускных окон 14 в крайних цилиндрах используются как продувочные.

На Фиг.7 показана внутренняя часть трехцилиндрового двигателя с противоположным движением поршней 9 и бесклапанной продувкой всех цилиндров (Модификация 2). Синхронизация движения поршней 9 осуществляется жестко соединенными с поршнями 9 штангами 17. Направляющими штоков 3 являются стенки цилиндров 10, 11 (цилиндры на Фиг.7 не показаны).

Поршни 9 крайних цилиндров 11 жестко соединены с штоками 3 преобразователей 8, состоящих из наборных магнитов 1 роторов 4 (роторы не показаны на Фиг.7), замыкающих магнитопроводов 18, штоков 3 и магнитов 2 штоков. Магнитопроводы 18 повышают эффективность магнитной системы и устраняют помехи для электронных устройств.

При работе по двухтактному циклу необходимо, чтобы в крайних цилиндрах 11 такт расширения происходил одновременно, при этом в центральном цилиндре 10 будет происходить сжатие воздуха или топливовоздушной смеси.

На Фиг. 8 показан трехцилиндровый двухтактный двигатель внутреннего сгорания с двумя преобразователями с противоположно вращающимися роторами 4, синхронизированными передачами 15 с двумя валами 16. На цилиндрах 10, 11 установлены выпускные коллекторы 22, впускные коллекторы 20. Впускные коллекторы крайних цилиндров соединены с корпусами 21 подшипников роторов и полым корпусом двигателя 19. Полость корпуса 19 используется в качестве продувочного ресивера, продувка от компрессора (на Фиг. 8 не показан)

Регулировка мощности производится регулировкой количества топлива, подаваемого в цилиндры 10,11 через форсунки (на Фиг.8 не показаны), путем изменения как продолжительности впрыска, так и количеством задействованных форсунок.

Удары поршней 9 друг о друга исключаются благодаря плоской форме поршней 9 и наличию тормозящей прослойки между ними из топливо-воздушной смеси или воздуха.

Цилиндры двигателя 10, 11 разгружены от боковых усилий, поэтому нет необходимости в жидкой смазке. При этом боковая поверхность поршня 9 или весь поршень 9 для снижения трения может быть изготовлен, например, из графита.

При использовании графитовых поршней 9 и цилиндров 10, 11 из сплава с заданным коэффициентом температурного расширения, равным коэффициенту температурного расширения графита поршня в радиальном направлении, можно отказаться от поршневых колец. Зазор между поршнями 9 и стенками цилиндров 10, 11 будет минимально возможным и постоянным, и при высоких частотах колебаний поршня 9 практически исключит утечки.

Охлаждение цилиндров 10, 11 может быть воздушным или жидкостным.

Высокая эффективность двигателя достигается благодаря отсутствию боковой нагрузки поршней 9 на стенки цилиндров 10, 11, возможности отказаться от жидкой смазки и поршневых колец, а также использованию высоких степеней сжатия.

Наилучший вариант выполнения изобретения

Наилучшим вариантом предлагаемого двигателя, является Модификация 1, изображенная схематично на Фиг.6, т.к. в ней можно максимально облегчить движущиеся возвратно-поступательно массы за счет переноса растягивающих сил с соединительных штанг 17 на корпус двигателя 19 (корпус на фиг. 6 не показан). Таким образом, можно повысить частоту колебаний поршня 9 и соответственно увеличить удельную мощность двигателя.

Промышленная применимость

В работе [2] построена математическая модель двигателя, аналогичного по рабочему процессу с предлагаемым двигателем. Расчет показал, что двигатель работоспособен и обладает высоким КПД.


Библиографический список
  1. Заявка PCT/RU2014/000825 от 29.10.14, публикация WO/2016/068744 от 06.05.16
  2. Сухаревский В.В. Кинематика и динамика двигателя внутреннего сгорания с магнитным преобразователем возвратно-поступательного движения во вращательное // Современные научные исследования и инновации. 2016 №2 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2016/02/64331 (дата обращения: 25.05.2016)
  3. Патент Франции FR2580362 от 10.04.85


Количество просмотров публикации: Please wait

Все статьи автора «Сухаревский Владимир Владимирович»

Новейшие коммерческие разработки свободнопоршневых двигателей для применения в автомобилях

Новейшие коммерческие разработки свободнопоршневых двигателей для применения в автомобилях (часть1)

 

Перевод Илья Духанин, июнь 2016г.

Recent commercial free-piston engine developments for  automotive applications  

M. Razali Hanipaha, b*, R. Mikalsen a, A.P. Roskilly a

aSir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom 

bFaculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia

*Corresponding author. Email:

 [email protected]

Аннотация

В последние годы активно исследуются свободнопоршневые двигатели, однако в коммерческой области они пока ещё не имеют успеха. В статье проведен обзор известных современных коммерческих разработок систем со свободнопоршневыми двигателями, особенно имеющих целью применение в тяговом тракте гибридных электрических транспортных средств, что обсуждается в свете опубликованных исследований. Обращаясь к новейшим публикациям и, в особенности, к патентным документам ведущих промышленных изготовителей, знакомясь с менее широко известным коммерческим исследованием, излагаются усилия по свободнопоршневым двигателям. В дальнейшем в этих публикациях показаны  главные технические проблемы, которые встают перед исследователями этой технологии.

 1.  Вступление

 Свободнопоршневые двигатели являются многообещающей альтернативой традиционным двигателям для гибридных транспортных средств или внедорожных транспортных средств с гидравлическим приводом [1-3].  Такие двигатели появились в середине 20 века в качестве газогенераторов и воздушных компрессоров, показывая в целом преимущественные характеристики [1]. В последние годы свободнопоршневые двигатели начали исследоваться множеством групп по всему миру, как  с академической стороны, так и с возможностью практического использования. Одним из ключевых движущих мотивов этих исследовательских усилий является, вероятно, потенциал свободнопоршневых двигателей в создании компактных и эффективных мощных электрических генераторов для гибридных транспортных средств.

Как генератор электрической энергии свободнопоршневой двигатель имеет некоторые потенциальные преимущества над традиционными двигателями с коленчато-шатунным механизмом: они механически проще, имеют более компактную конструкцию, благодаря встроенному генератору и единственному подвижному компоненту. С другой стороны, традиционные генераторы имеют  коленчато-шатунный механизм, маховик и механические соединения. Отсутствие коленчато-шатунного механизма будет значительно снижать потери на трение, поскольку  нет бокового биения поршня, возникающего в результате преобразования линейного  движения во вращательное, а также за счёт меньшего числа деталей, что означает уменьшение контактного трения во всей системе. Кроме того, такая «без-кривошипная» работа делает  такт расширения более быстрым, что снижает потери от теплопередачи тепла в цилиндре [4]. К тому же может быть реализована переменная степень сжатия для требуемого управления нагрузкой, что  может позволить свободнопоршневому двигателю работать в оптимальном диапазоне циклической скорости для максимального КПД. Эти преимущества могут дать эффективный первичный привод с пониженными вредными выбросами для применения в гибридных транспортных средствах [5-8].

Концепция свободнопоршневого двигателя представляет значительный академический интерес. Множество групп сообщают об исследованиях различных аспектов этой технологии (см., например, обзор Mikalsen и Roskilly [1]). Примеры совсем недавних исследований свободнопоршневого двигателя включают работы по гидравлическим [9-11] и электрическим свободнопоршневым двигателям [12-15], выполненные группами Пекинского института технологии, работы Национального Университета науки и технологии Тайваня [16], Университета Джиао Тонг Шанхая [17], Университета Тянжина [18], Прикладного института  науки и технологии Кореи [19], Стэнфордского университета [20], Наньджинского университета [21], Университета технологий Петронас [22,23] и Университета Ньюксла [4, 24-30].

Однако сообщения о проводимых коммерческих разработках свободнопоршневых двигателей довольно редки, хотя и известно, что многие крупные автомобильные концерны вовлечены в такого рода исследования, например: участие Volvo в финансируемом ЕС проекте «Свободнопоршневого преобразователя энергии»,  Lotus Engineering в проекте «Свободнопоршневого преобразователя энергии с нулевым ограничением», финансируемым Британским советом инженерных и физических наук и научно-исследовательской работы (EPSRC). Одной из причин скудного количества сообщаемых коммерческих исследований свободнопоршневого двигателя может состоять в различных целях между академическими и коммерческими исследовательскими группами.  Академические исследователи естественно стараются наиболее широко распространять свои результаты, в то время как коммерческие участники имеют тенденцию защитить подробности свою коммерческую интеллектуальную собственность засекречиванием или патентованием.

В этой статье ставится цель дать определение и обзор некоторых современных разработок систем свободнопоршневого двигателя, особенно с целью применения в тяговых трактах гибридных транспортных средств. Анализ очерчивает большой объем опубликованной патентной информации от основных коммерческих участников. Это позволяет нам идентифицировать те концепции свободнопоршневого двигателя, которые наиболее близки к коммерческой стадии. Кроме того, патентные документы, вероятно, касаются тех аспектов, которые представляют наиболее важные технические проблемы концепции свободнопоршневого двигателя. Следовательно эти материалы могут служить индикатором того, как эти разработчики смотрят на ключевые проблемы, чтобы решить их и сделать эту технологию коммерчески жизнеспособной.

2.      Современное развитие свободнопоршневых двигателей

Представленные здесь данные основаны на обзоре современных патентов и патентных заявок основных автомобильных производителей, занимающихся технологией свободнопоршневого двигателя (СПД). Примечательно, что современный интерес к этой технологии для применения в автомобилях сосредоточен почти исключительно на СПД с гидравлическим насосом и СПД с электрическим генератором в противоположность области применения в воздушных компрессорах и газогенераторах, которые были в центре внимания в ранних разработках [1].

Данные для этого обзора были получены посредством патентного поиска по Международной патентной классификации по классу FO2B71 и с помощью использованиям ключевых слов. Таким образом на основе результатов поиска определялся верхний список патентных заявок, а также по этому набору данных проводились некоторые прямые поиски для имен известных компаний. Используя эту стратегию, для нас стало возможно широко охватить  патенты по СПД, исключая какую-либо ошибку, основанную на законных именах субъектов права, а также прямо идентифицируя коммерческих участников рынка, известных по участию в исследовательских проектах по СПД.

2.1              General Motors

Современные патентные заявки от General Motors [31,32] описывали оппозитные поршневые концепции, работающие по двухтактному циклу в конфигурации, представленной на рис. 1.

Рис. 1. Оппозитно-поршневой тип свободнопоршневого генератора (FPLA) [31,32].

Следует отметить, что эта концепция очень похожа на  первое поколение свободнопоршневых компрессоров и газогенераторов [1], таких как газогенератор Sigma GS-34, показанный на рис. 2, однако отличается тем, что не предусматривается механизм синхронизации. Выходная электрическая мощность достигается за счёт интегрированной электрической машины с постоянными магнитами, встроенными в поршни и катушек обмоток, смонтированных в корпусе цилиндров.

В то время  как первое поколение свободнопоршневых двигателей использовало механическую синхронизацию, это решение GM имеет цель  использовать буферные камеры и электрическое торможение для синхронизации и управления обоими поршнями [31]. Для встроенных в поршни постоянных магнитов должна обеспечиваться оптимальная температура путём наличия прослойки воздуха от продувочной камеры вокруг поршней. Ход поршня может управляться электрическим торможением, а также регулированием давления в буферной камере.

Рис. 2. Схема свободнопоршневого газогенератора GS-34 [1] (см. также London и Oppenheim  [33], Flynn [34] и Huber [35]).

Как сообщалось различными исследователями, отсутствие маховика стало одной из главных проблем при запуске и работе свободнопоршневого генератора для свободнопоршневой конструкции из  спаренных поршней [1, 21, 22, 36]. Причина состоит в том,  что имеющееся прямое влияние сгорания в одном цилиндре будет  изменять профиль движения на следующем цикле и, следовательно, процесс сжатия в другом цилиндре. Таким образом, во время работы могут получаться изменения степени сжатия, что может привести к нестабильной работе или даже к пропуску воспламенения.

Заявка на патент от Holmes [37] представляет концепцию решения этого вопроса при помощи «электрического маховика». В системе, показанной на рис. 3, линейная машина (свободнопоршневой двигатель) электрически соединена с помощью двух комплектов катушек к вращающейся машине (в середине) и к батарейному источнику питания через преобразователь. Дополнительно, двигатель с переменной скоростью может быть механически связан через редуктор с вращающейся машиной, а также  электрически связан со всей системой через два набора катушек, как описано в патенте.

Поршень сделан из ферромагнитного материала. Принцип работы системы может быть описан следующим образом (для первой камеры сгорания). Во время запуска батарея питает пусковым током (), который двигает поршень возвратно-поступательно и обеспечивает вращение вращающейся машины, чтобы получить для нескольких циклов достаточную энергию инерции. Когда в цилиндре номер один достигаются необходимые условия, впрыскивается топливо и воспламеняется для сгорания. При воспламенении питающий ток выключается, в то время как поршень движется ко второму цилиндру, индуцируется первый ток (I1) в первой катушке. На протяжении всего хода I будет поддерживать работу вращающейся машины, чья инерция вращения индуцирует второй ток I2 в четвёртой катушке. Второй ток используется для точного позиционирования поршня во второй камере сгорания посредством второй катушки. Затем, когда происходит второе сгорание, это индуцирует генераторный ток Ig для работы цикла. Этот ток может быть использован для зарядки батареи и привода внешних нагрузок.

Рис. 3 Работа системы с электрическим маховиком (двигатель с регулируемой скоростью не показан) [37].

Благодаря этой конструкции две машины (то есть линейная и вращающаяся) будут попадать в режим синхронной работы, и, следовательно,  в случае если свободнопоршневой двигатель отстаёт или обгоняет, то инерция вращения вращающейся машины будет производить тормозящую или ускоряющую силу посредством катушек. Это может тогда снизить или сбалансировать изменения от цикла к циклу, для того чтобы достичь устойчивой работы, а также предотвратить пропуски воспламенения. Следовательно, в принципе это устройство может функционировать как «электрический маховик», который так или иначе отсутствует в свободнопоршневом генераторе.

Хотя в этой заявке на патент описывается свободнопоршневой генератор с двойной камерой сгорания, в то же время в поздних патентах [31, 32] описанных прежде, показан тип с оппозитными поршнями, этот метод может быть, в принципе, использован для любого типа свободнопоршневого двигателя.

Продолжение  Новейшие коммерческие разработки свободнопоршневых двигателей для применения в автомобилях(часть2)

Двигатель свободнопоршневой - Энциклопедия по машиностроению XXL


Моделирующие устройства, использование в самонастраивающихся системах управления G 05 В 13/04 Моечные машины (для очистки поверхности вообще В 05 С центрифуги для моечных машин В 04 В электромагнитные клапаны F 16 К 11/24) Мойка транспортных средств В 60 S Молекулярные (насосы D 19/04 сита, выбор для сорбционных насосов В 37/04) F 04 Молниеотводы, установки на летательных аппаратах В 64 D 45/02 Молотки (деревянные, изготовление В 27 М 3/16 использование для очистки теплообменных и теплопередающих каналов F 28 G 1/08-1/10, 3/10-3/14 В 25 Д (пневматические 9/00 электрические 11/00) ручные (В 25 D 1/00-1/04 изготовление ковкой или штамповкой В 21 К 5/14)) Молоты и их детали J 7/00-7/46 использование для гибки металлов D 5/01, 7/06) В 21 комбинированные со свободнопоршневыми двигателями F 01 В 11/04] Момент инерции, определение G 01 М 1/10 Монопланы В 64 С 39/10 Монорельсовые [ж.д. (В 61 В 13/04-13/06 локомотивы и моторные вагоны В 61 С 13/00) подвесные тележки подъемных кранов В 66 С 11 /06 транспортные средства, электрические тяговые системы для них В 60 L 13/00] Монотипы В 41 В 7/04 Монтаж [газотурбинных установок F 02 С 7/20 запасных колес  [c.113]
Рис. 1.28. Свободнопоршневой двигатель Стирлинга.
Рис. 1.32. Полный рабочий цикл свободнопоршневого двигателя Стирлинга.

Таким образом, рабочий цикл свободнопоршневого двигателя Стирлинга почти полностью идентичен циклу двигателя, в котором рабочий и вытеснительный поршни механически связаны кривошипным механизмом обычного типа. Этот вывод не слишком неожидан. Уильям Бил, изучая ромбический привод, установил, что двигатель может работать и при отсутствии механизма привода, а один из студентов Била впервые построил действующий свободнопоршневой двигатель [9]. Конфигурация вытеснительный поршень — рабочий поршень в свободнопоршневом двигателе, по существу, является колебательной системой масса — пружина, и эта система настраивается на работу с резонансной частотой, которая и является рабочей частотой двигателя. Однако необходимо заметить, что двигатель Била может работать и в таком режиме, при котором вытеснительный поршень будет совершать не простые гармонические (синусоидальные) колебания, вызываемые резонансом, а колебания, график которых имеет более прямоугольную форму. В этом случае двигатель работает в так называемом режиме банг-банг . Это название, может, и не строго научное, очень наглядно отражает физическую природу работы двигателя.  [c.39]

Как и двигатель Стирлинга с обычным кривошипным приводом, свободнопоршневой двигатель Стирлинга имеет различные модификации, определяемые методами отбора мощности, развиваемой двигателем. Классификация этих модификаций  [c.39]

Если считать схему на рис. 1."28 и 1.29 основной формой двигателя Била, то главной проблемой такого двигателя ста-, новится отбор и использование развиваемой им мощности. Один метод представляется особенно эффективным. Он заключается в превращении рабочего поршня в постоянный магнит. Если разместить вокруг цилиндра обмотку, то при перемещении поршня внутри обмотки будет генерироваться электрический ток. Фактически устройство в этом случае будет линейным генератором переменного тока (рис. 1.33), и его можно классифицировать как двигатель Била, буквально соответствующий названию свободнопоршневой.  [c.40]

Цилиндр двигателя также можно использовать в качестве элемента, передающего мощность, если сделать цилиндр исключительно легким, а поршень — исключительно массивным. Поршень в этом случае будет действовать как опора, оставаясь практически неподвижным, а вытеснитель и цилиндр станут свободно перемещаться. Тогда цилиндр можно использовать в качестве постоянного магнита или в более привычном варианте присоединить к рычагу привода гидравлического насоса (рис. 1.34). Гидронасос в свою очередь можно использовать для привода гидромотора, что делает возможным установку свободнопоршневого двигателя на автомобиле [10]. Однако, несмотря на множество возможных вариантов применения свободнопоршневых двигателей, наиболее перспективным являет-  [c.40]

Еще одним типом свободнопоршневого двигателя является термомеханический генератор (ТМГ). Этот вариант — один из  [c.41]

На рис. 1.42 показана газовая полость, названная буферной. Эта полость расположена под рабочим поршнем в основном корпусе двигателя. Газ в этой полости создает упругую силу, как и в буферной полости свободнопоршневого двигателя. Однако назначение буферной полости в данном случае несколько иное, чем в свободнопоршневом двигателе, поскольку здесь она используется для снижения нагрузок на механизм привода и для облегчения условий работы уплотнений рабочего поршня. Этот эффект достигается созданием в буферной полости давления, равного среднему давлению цикла в рабочих полостях. Объем буферной полости стремятся сделать как можно большим, чтобы уменьшить колебания давления в ней. Давление газа, действующего на привод и стремящегося прорваться  [c.57]

Чтобы обеспечить максимальный КПД, необходим, по-видимому, фазовый угол, превышающий 90° [43]. До настоящего времени не было данных о влиянии фазового сдвига на характеристики свободнопоршневых двигателей Стирлинга, однако  [c.100]


Хотя этот вопрос рассматривается отдельно от стоимости, на самом деле стоимость изготовления прямо связана с технологичностью. Однако для большей четкости изложения удобнее рассмотреть вопросы, связанные с технологичностью, отдельно. Как видно из табл. 1.10, двигатель Стирлинга имеет большую стоимость, чем другие варианты автомобильных двигателей составляющие этой стоимости приведены в табл. 1.12. Основная причина такой относительной дороговизны двигателя Стирлинга — использование высоколегированных сплавов для изготовления теплообменников. Конструкция теплообменников предусматривает применение весьма дорогой технологии пайки и дорогостоящих материалов для пайки, при этом длина паяных швов весьма значительна [37]. Допуски на обработанные поверхности деталей двигателя Стирлинга, как правило, более жесткие, что является следствием применения замкнутого рабочего цикла. Для свободнопоршневых двигателей Стирлинга качество механической обработки является, вероятно, наиболее важным требованием для обеспечения нормальной работы двигателя.  [c.142]

Уплотнение свободнопоршневых двигателей  [c.169]

Здесь будут рассмотрены только методы регулирования мощности двигателей с кривошипно-шатунным приводом, поскольку эти методы являются наиболее совершенными, и, кроме того, они в принципе применимы к свободнопоршневым двигателям Стирлинга. Имеются два основных метода регулирования мощности, применяемых как в отдельности, так и совместно  [c.170]

Свободнопоршневой двигатель, соединенный с линейным генератором переменного тока, теперь достиг уровня мощности, превышающего 1 кВт, и это представляется довольно перспективной областью применения в будущем, особенно для работы в космосе или для армейских полевых установок [103]. В настоящее время установка из свободнопоршневого двигателя и  [c.206]

Мы не можем утверждать, что некоторые проблемы, связанные с двигателями Стирлинга, в особенности со свободнопоршневым двигателем, освещены с исчерпывающей полнотой, однако если учесть ограниченный объем книги, то уже хорошо, что эти вопросы все же подняты. Мы попытались компенсировать беглость изложения ссылками на соответствующую литературу. Несмотря на наше несколько критическое отношение к проделанной работе, мы все же надеемся, что приведенная нами информация и ее объем позволят читателю получить представление о состоянии разработок двигателя Стирлинга, факторах, обуславливающих его дальнейшее развитие, и перспективах на будущее. При этом потенциальный покупатель такого двигателя сможет решить, представляет ли этот двигатель для него интерес. Для студентов и исследователей мы попытались наметить перспективные области исследований, а для преподавателей — проследить взаимосвязь основных принципов цикла Стирлинга с путями его практического усовершенствования. В конечном счете после прочтения этой главы читатели будут больше знать о двигателях Стирлинга.  [c.217]

Если не считать среднего давления, которое для небольших двигателей может быть ниже, значения остальных параметров применимы в общем случае. Для жидкостных и свободнопоршневых двигателей значения /г и а могут быть нетипичными. Для первых из них значения среднего давления и отношения температур определенно не типичны.  [c.296]

Схема устройства для измерения температуры поршня двигателя свободнопоршневых машин представлена а рис. 55. Горячий спай термопары 1 устанавливается в тело поршня. Термопровода 2 подсоединяются к контактам 3, выведенным с помощью штока, закрепленного на поршне компрессора, через крышку буфера наружу машины. При прохождении поршнями в. м. т. контакты 3 на некоторое время замыкаются с пружинными или скользящими наружными контактами 4, которые со-  [c.95]

Третья группа. Силовая установка состоит из поршневого двигателя, свободнопоршневого двигатель-компрессора (СПДК) и из газовой турбины (фиг. 6, а).  [c.25]

Все разобранные схемы составлены применительно к использованию турбомашин, но с достаточным основанием могут характеризовать и установки с поршневыми двигателями или генераторами газа. Так, в схеме по рис. 1-3, е паросиловая часть установки сохранит все свои характеристики, если утилизируемые отработавшие газы будут поступать не из ГТУ, а из глушителя двигателя внутреннего сгорания. Установка с использованием в паровой турбине пара, генерируемого в зарубашечном пространстве дизеля, совершает термодинамический цикл, сходный с циклом парогазовых установок по схеме рис. 1-3, б. Камеру сгорания в схемах с предвключенными газовыми турбинами (рис. 1-3, г) можно заменить свободнопоршневыми генераторами газа.  [c.24]

В области наименьших мощностей речь может идти об использовании в паровой турбине отходящего тепла поршневого двигателя внутреннего сгорания. В более крупных установках осуществимо сочетание в газовой части цикла турбины и свободнопоршневых генераторов газа — СПГГ.  [c.63]

Схема уже осуществленной установки такого типа показана на рис. 2-23 [Л. 1-16]. Здесь так же, как в парогазовой схеме с предвключенной газовой турбиной и в схеме Фойта, предусмотрено сжигание топлива в двух элементах установки. Первый из них — свободнопоршневой агрегат, состоящий из двигателя и компрессоров низкого и высокого давления. В данном случае двигатель не только приводит в действие компрессор, но и генерирует сжатый газ, работающий в части низкого давления газовой турбины.  [c.65]

Работа двигателя равна работе, затрачиваемой на привод компрессоров. Поэтому в свободнопоршнево.м агрегате существует равенство площадей  [c.67]

Малость объемных расходов воздуха, продуктов сгорания и пара сделала целесообразным выполнение компрессора, детандера и парового двигателя в виде поршневых машин. Это, естественно, натолкнуло на мысль объединить все перечисленные элементы в единый свободнопоршневой наддувный агрегат. Продольный разрез половины симметричного блока запроектированного наддувного агрегата показан на рис. 7-10. На каждый котел приходится по два таких агрегата.  [c.178]


Двигатели [внутреннего сгорания [F 02 свободнопоршневые В 71/00-71/06 со сжатием (воздуха В 3/00-3/12 горючей смеси В 1/00-1/14) на твердом топливе В 45/00-45/10 устройства для ручного управления D 11/00-11/10 с устройствами для продувки или заполнения цилиндров В 25/00-25/08) G 01 индикаторных диаграмм 23/32 датчики давления, комбинированные с системой зажигания двигателей 23/32 индикация (относительного расположения поршней и кривошипов 23/30 перебоев в работе 23/22 работы или мощности 23/00-23/32)) измерение расхода жидкого топлива F 9/00-9/02 испытание (М 15/00 деталей М 13/00-13/04)) F 01 рабочего тела К 25/00-25/14) изготовление для них ковкой или штамповкой В 21 К 1/22 использование теплоты отходящих газов (F 02 G 5/00-5/04 холодильных машин F 25 В 27/02) комбинированные с электрическим генератором Н 02 К 7/18 работа в компрессорном режиме F 04 В 41/04 на транспортных средствах В 60 К 5/00-5/12] (гравитационные 3/00-3/08 инерционные механические 7/00, 7/04-7/10) F 03 G для грейферов В 66 С 3/14-3/18 изготовление деталей В 21 D 53/84 многократного расширения в паросиловых установках F 01 К 1102-7104 объемного вытеснения F 01 В (агрегатирование с нагрузкой 23/00-23/12 атмосферные 29/02 комбинированные с другими машинами 21/00-21/04 конструктивные элементы 31/00-31/36 предохранительные устройства 25/16-25/18 преобразуемые 29/04-29/06 пуск 27/00-27/08 расположение и модификация распределительных клапанов 25/10 регулирование 25/00-25/14 сигнальные устройства 25/26) работающие на горючих газах F 02 G 1/00-1/06 рас-пределителыше механизмы F 01 L 1/00-13/08 для пишущих машин В 41 1 29/38 пневматические в избирательных переключателях Н 01 Н 63/30  [c.72]

Двигатели [для подъемных кранов В 66 С 23/00 пружинные ведущих колесах транспортных средств В 60 К 7/00 распределительные механизмы F 01 L ротативные (роторнопоршневые) F 01 В 13/00 рулевые на судах В 63 Н 25/26-25/32 самолетов, установка и крепление В 64 С (1/16 в крыльях 3/32) свободнопоршневые F 01 В 11/00-11/08 судов подвесные, размещение и применение В 63 FI 21/26-21/28 В 65 тара и упаковочные элементы для хранения и транспортировки D 85/68 упаковка В (33/04 запасных частей 33/02)) трак-  [c.72]

Заправка [локомотивов с паровыми и воздушными аккумуляторами В 61 С 8/00 топливом [жидким (транспортных средств В 60 В 5/02 летательных аппаратов (37/14-37/18 в полете 39/00-39/06) В 64 D) твердым паровозов В 65 G 67/18] Заправочные устройства (аэродромные В 64 F 1/28 локомотивов В 61 С 17/02) Запрессовка пластических материалов В 29 С 63/00 Запуск [ДВС (F 02 (N, карбюраторы со средствами для облегчения пуска М 1/00-1/18 мускульной силой N 1/00-3/04 с подогревом двигателя N 17/02-17/06 пусковыми двигателями N 5/00-15/00 свободнопоршневых В 71/02 топливные насосы М 59/42) клапаны F 01 L 13/04) двигателей летательных аппаратов, аэродромные устройства В 64 F 1/34] Заряды для взрывных работ (В 3/00-3/198 безопасное хранение D 5/04) F 42 твердосплавные, форма и конструкция для ракетных двигательных установок F 02 К 9/10-9/22 в ударных инструментах для забивания гвоздей В 25 С 1/16) Заряжение ракетных двигателей твердым топливом F 02 К 9/24, 9/72 Заслонки (для бункеров, желобов, ковшей В 65 D 90/54-90/66 воздушные (в карбгэраторах F 02 М в системах вентиляции и кондиционирования F 24 F 13/08-13/18))  [c.81]

Магнитные [приводы (вибрационные в устройствах для преобразования возвратно-поступательного движения во вращательное Н 02 Н 7/065 золотниковых распределительных механизмов для свободнопоршневых машин или двигателей F 01/L 25/08) сепараторы для разделения материалов В 03 С 1/02-1/30 системы в смесителях В 01 F 13/08 средства (для закрепления винтов или гаек В 25 В 23/12 для разделения изделий, уложенных в стопки В 65 Н 3/16 в формах для формования пластических материалов В 29 С 33/16, 33/32) усилители, использование (для регулирования заряд1Юго тока или напряжения Н 02 J 7/12 в системах управления тяговыми электродвигателями транспортных средств В 60 L 15/18 15/28) элементы, использование в холодильных машинах F 25 В 21/00] Магннтография (G 03 G 19/00 исследование магнитографических методов для обнаружения локальных дефектов G 01 N 27/85) Магниты, использование для разделения материалов В 03 С 1/00 Магнуса эффект, использование (для  [c.108]

Свечи [зажигания (охлаждение в двигателях F 01 Р 1/10, 3/16 очистка пескоструйная В 24 С 3/34 из пластических материалов В 29 L 31-.34 схемы F 02 (С 7/264, Р 19/02), F 23 Q 7/00 фильтровалыше В 01 D 29/32] Свободнопоршневые [F ()2 генераторы газов (В 71/06 использование в газотурбинных установках С 5/08) ДВС (В 71/(00-06) регулирование D 39/10)) двигатели F 01 распределительные механизмы для них L 27/(00-04) F 04 В компрессоры 31/00 насосы для глубоких скважин 47/12] Свободноструйные гидротурбины F 03 В 1/00-1/04 Своды камер сгорания (топок) F 23 М 5/06 печей F 27 D 1/02-1/08) Связьтание [В 65 (изделий В 13/(00-34) материалов в кипы и тюки В 27/(00-12), D 71/(00-04) пасм FI 54/62 узлов при соединении концов нитевидных материалов Н 69/04) проволоки перед скручиванием В 21 F 7/00] Сгибание (см. также складывание, фальцовка картонных листов при изготовлении коробок и т. п. В 31 В 1/26-1/58 листов или пластин при изготовлении трубчатых изделий из пластмасс В 29 С 53/(04-06)) Седла (велосипедов, мотоциклов и т. п. В 62 J 1/00-1/28 клапанов F 16 К 1/(34, 42, 44)) Сепараторы [жидкостные и воздушные для очистки жидкостей В 67 D 5/58 магнитные (для обработки формовочных смесей В 22 С 5/06 для разделения материалов В 03 С 1/02-1/30) для отделения частиц В 01 D 46/(02-54) паровых котлов F 22 В Ъ11 1Ь-ЪТ подшипников (изготовление ковкой или штамповкой В 21 К 1/05 F 16 С (роликовых и игольчатых 33/(46-56) шариковых 33/(38-  [c.172]

Флюидайн , двигатель Била и харуэллская машина также являются двигателями простого действия. Первый из них, особенно в мокрой модификации (рис. 1.57) выглядит точно так же, как и на схеме рис. 1.38, в. Этот двигатель с перекачкой энергии с помощью реактивной струи создан в Королевском морском инженерном колледже и подробно описан в работах [21, 22]. Свободнопоршневые двигатели (двигатель Била и харуэллская машина) в соответствии с требованиями техники безопасности помещаются в герметичные сосуды со сжатым газом. Из-за этого их внешний вид весьма невыразителен  [c.65]

ЛОСЬ много вариантов двигателей двойного действия, все они, по существу, могут быть разделены на два вида квадратная четверка и обычные рядные двигатели. Хотя и рассматривались двигатели двойного действия свободнопоршневого типа и типа Флюидайн и в этой области проведена определенная конструкторская и экспериментальная работа, нельзя утверждать, что совершенствование этих двигателей продвинулось достаточно далеко.  [c.67]

На основании. этих результатов, полученных на опытных двигателях, для которых не предусматривалось специальных изменений конструкции для снижения шума, можно сделать уверенный вывод, что двигатель Стирлинга обладает низким уровнем шума. Свободнопоршневой двигатель Стирлинга может иметь существенно более высокий уровень шума при работе в режиме банг-банг , в то же время двигатель Флюи-дайн практически бесшумен. Несомненно, что при введении специальных изменений в конструкцию двигателя Стирлинга уровень шума можно снизить еще больше. Бесшумный двигатель не только способствует охране окружающей среды, но и создает более комфортные условия работы в машинном отделении и тем самым способствует повышению производительности труда присутствующего там персонала.  [c.112]


Основная часть информации по уплотнению свободнопоршневых двигателей является собственностью организаций, занимающихся их изготовлением и испытаниями, однако в работе [33] имеется несколько глав, посвященных конструкции свободнопоршневых двигателей, написанных разработчиками и изготовителями таких двигателей, что помогает составить более полную картину методов уплотнения, применяющихся в этих двигателях. В свободнопоршневых двигателях нет многих трудностей, связанных с уплотнениями, которые встречаются в двигателях с кривошипно-шатунным приводом. Так, например, нет проблемы уплотнения штоков, поскольку весь агрегат можно заключить в герметичный корпус, как это делается в линейных генераторах переменного тока и инерционных компрессорах. Однако остается проблема уплотнения поршня, хотя она и упрощается благодаря отсутствию значительных боковых сил и нагрузок на подшипники, поскольку нет механического привода, что позволяет применять в таких двигателях газовые подшипники. Применение газовых подшипников делает невозможным установку обычных эластичных колец, даже изготовленных из тефлона, поскольку микрочастицы, отделяющиеся при работе таких колец, выводят из строя эти подшипники. Поэтому в свободнопоршиевых двигателях для уплотнения в цилиндре рабочего поршня и вытеснителя, а также уплотнения штока вытеснителя в рабочем поршне используют уплотнения за счет жестких допусков. Это требует полировки всех скользящих поверхностей, и эти поверхности часто покрывают анодированным алюминием или окисью хрома [85]. Без сомнения, секрет успешной работы свободнопоршневых двигателей Стирлинга заключен в высоком качестве механической обработки.  [c.169]

В этот же период исследовательский коллектив Харуэллской лаборатории и группа Била начали исследования свободнопоршневых двигателей и двигателей с жидкими поршнями. Были созданы и испытаны с разной степенью успеха опытные образцы таких двигателей. Работы по свободнопоршневым двигателям проводились также в различных институтах США.  [c.194]

Работы над свободнопоршневым двигателем в этот период достигли такого уровня развития, что стало возможным приступить к коммерческому выпуску двигателей как в модификации Харуэллской лаборатории, так и в модификации Била. Были предприняты работы по совершенствованию двигателя Флюи-дайн с целью использования его на Индийском субконтиненте. Изучались также возможности использования сухой модификации этого двигателя, работающей на угле.  [c.196]

Эта область применения связана в основном с получением энергии для перекачки жидкостей. В прошлом, как отмечалось выше, двигатель Райдера был популярен именно в этой области. При использовании в этом качестве двигателя Стирлинга обычной конструкции с кривошипным приводом пришлось бы комплектовать его отдельным перекачивающим устройством, однако в случае применения двигателя Флюидайн или свободнопоршневого двигателя (в том числе модификации со свободным цилиндром ) перекачивающий насос становится  [c.207]

Уокер [7] составил перечень терминов и определений, и хотя этот перечень не полон, тем не менее он крайне полезен, поскольку из-за отсутствия общепринятых терминов наблюдаются многочисленные разногласия в применении терминов и определений. Такая неблагоприятная ситуация будет существовать до тех пор, пока не будет предпринята серьезная попытка сформулировать полный набор терминов, определений и т. п. При этом необходимо учитывать, что в условиях быстрого со-верпзенствования конструкции двигателей Стирлинга, особенно свободнопоршневых двигателей, по-настоящему полный перечень составить невозможно, однако в распоряжении исследователей уже имеется достаточный материал, чтобы сделать первый значительный шаг в этом направлении. В настоящей книге предпринята такая попытка, и, хотя было бы самонадеянным считать, что охвачены все термины и определения или что предлагаемые термины и определения станут общепринятыми, мы надеемся, что в конце концов придем к общепринятой терминологии и завершим дело, начатое Уокером. Преподаватели технических дисциплин могли бы внести заметный вклад в это дело, приняв из рекомендуемой терминологии то, что они найдут приемлемым. Знакомство с принятой терминологией и привычка к ее употреблению приведут к тому, что номенклатура стандартных терминов и определений будет распространяться и вытеснять неточную и неоднозначную терминологию из литературы.  [c.209]

Со времени изобретения двигателя Стирлинга в 1815— 1816 гг. построено множество двигателей различных конфигураций и еще большее число конфигураций было предложено. На протяжении многих лет все эти существующие и гипотетические двигатели имели кривошипный привод в том или ином виде, однако в период, примерно соответствующий последним десяти годам, с изобретением свободнопоршневых двигателей типа двигателя Била и харуэллской машины, а также двигателя Флюидайн к существующему списку конфигураций двигателя Стирлинга (и так достаточно обширному) добавились новые формы. И до настоящего времени продолжают изобретать новые формы этого двигателя. Такое разнообразие форм двигателя Стирлинга существует скорее всего потому, что до сих пор не найдены оптимальная конфигурация двигателя или оптимальный режим работы, которые удовлетворяли бы всему разнообразию условий работы, и такой двигатель вряд ли возможен. Эта ситуация не является специфичной именно для двигателя Стирлинга. Она имеет место и в отношении к другим тепловым двигателям, однако двигатель Стирлинга отличается, пожалуй, наибольшим разнообразием форм.  [c.210]


Альтернативные силовые установки для транспортных средств

Двигатели внутреннего сгорания (ДВС) уже почти 200 лет служат человечеству. Однако их широкое использование оборачивается целым рядом экологических и ресурсных проблем. 26% всех выбросов антропогенных парниковых газов вызваны сжиганием ископаемого топлива. При этом более 90% топлива,  используемого для автомобилей, судов, локомотивов и самолетов, получено из нефти. При сгорании нефтепродуктов в атмосферу выделяются крайне вредные окись углерода, двуокись углерода, углеводороды, окислы азота и другие компоненты. Загрязнение воздуха выступает причиной каждой девятой смерти в мире и признано одним из крупнейших вызовов в области здравоохранения и окружающей среды. В ряде развитых стран принимаются активные меры по постепенному переводу транспорта с ДВС и расширению использования альтернативных источников топлива. Так, Германия приняла закон о запрете продажи новых автомобилей с ДВС с 2030 г. Страна планирует к 2050 г. сократить автомобильные выхлопы до нуля. Аналогичные инициативы обсуждаются в других странах ЕС, США, Индии.
Более активное использование современных альтернативных силовых установок позволит снизить объем вредных выбросов в атмосферу Земли, сократить расходы на содержание транспортных средств и увеличить их КПД. Разработка таких технологий даст возможность странам, испытывающим дефицит традиционного топлива, уменьшить свою энергетическую зависимость. Ниже рассмотрены перспективные технологии новых типов двигателей для автомобилей, работающих на альтернативном топливе: водородные и метанольные топливные элементы для электромобилей, а также двигатели внутреннего сгорания на диметиловом эфире.

Версия для печати: 

ВОДОРОДНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ ДЛЯ ЭЛЕКТРОМОБИЛЕЙ

Использование водорода в качестве топлива возможно в транпортных средствах как с ДВС, так и с водородными топивными элементами. Однако традиционные поршневые ДВС приспособить к работе на водороде и сложно, и дорого (стоимость эксплуатации и обслуживания такой водородной силовой установки примерно в 100 раз выше, чем у обычного двигателя внутреннего сгорания).

Альтернативные вариантом являются топливные элементы (ТЭ), преобразующие химическую энергию топлива в тепло и постоянный электрический ток, питающий электродвигатель или системы бортового питания транспортного средства. ТЭ представляет собой непрерывно перезаряжаемую батарею из двух покрытых катализатором электродов, между которыми находится электролит. Через один электрод подается водород, через другой — чистый кислород или кислород из воздуха, к которым постоянно добавляются химическое топливо и окислитель. Соединение водорода с кислородом обычно происходит внутри пористой полимерной мембраны. 
Водородные ТЭ намного более экологичны, эффективны (их КПД составляет 45%, современного автомобильного ДВС — 35%), надежны, способны работать при низких температурах, при этом менее габаритны. Они могут  применяться в качестве силовых установок в гибридных автомобилях, а в электромобилях — в качестве суперконденсаторов. 



 

Эффекты

  Экологичность: при сгорании водорода в двигателе образуется практически только вода

 Распределенное энергоснабжение: водород в виде неиспользованного электричестваможно применять для питания домашней электросети

 Возможное сокращение общего объема потребления нефти в секторе автомобильных перевозок на 40% к 2050 г.

Оценки рынка

70 тыс. в год 

к 2027 г. составит выпуск новых водородных автомобилей в мире 

Драйверы и барьеры

  Удобство использования автомобильной техники на ТЭ (не требуют перезарядки, моментально поставляют электроэнергию, выработка энергии ТЭ не зависит от времени суток, погодных условий и др.)

 В перспективе открытие более дешевых и эффективных катализаторов для получения водорода позволит значительно снизить стоимость производства водородных ТЭ

 Высокие затраты на выработку водорода: от $4 до $12 за килограмм в разных странах (бензин-галлоновая эквивалентная стоимость составляет от $1,60 до $4,80)

 Отсутствие автомобильной инфраструктуры

 Сложность в эксплуатации: уязвимость к ударным нагрузкам и сотрясениям, взрывоопасность, при низких температурах ТЭ требуют внешнего подогрева из-за замерзающей воды

 Отсутствие единых стандартов безопасности, хранения, транспортировки, распределения и применения водородных ТЭ






Международные
научные публикации
Международные
патентные заявки

Уровень развития
технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



МЕТАНОЛЬНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Метанол — высококачественное моторное топливо для ДВС — хорошо зарекомендовал себя и как энергоноситель в ТЭ, используемых в портативной электронике, транспортных приложениях, а также в электромобилях. В ТЭ метанол расщепляется при взаимодействии с атмосферным кислородом (воздухом), в результате этой реакции возникает электрический ток и образуется вода в качестве побочного продукта. 

В настоящее время разрабатываются технологии получения метанола из природного газа (минуя синтез-газ) посредством гидрирования из промышленных выбросов углекислого газа (в долгосрочной перспективе его научатся извлекать прямо из окружающего воздуха). Также ведутся разработки по производству биометанола из биомассы (лигноцеллюлозы), что послужит толчком к массовому распространению метанольных ТЭ.  



 

Эффекты

  Сокращение выбросов углекислого газа более чем на 70% при расщеплении биометанола в ТЭ

  Электромобили нового типа могут проезжать до 800 км на одном заряде батареи с применением метанольных ТЭ

Оценки рынка

40 млн ед. 

к 2020 г. составит объем рынка автотранспортных средств, работающих на метанольных ТЭ (благодаря чему на 104 млн т будут сокращены выбросы углекислого газа по сравнению с объемом выбросов от автомобилей на бензиновом ДВС)

Драйверы и барьеры

 Экологичность: метанол менее биологически опасен, чем нефтепродукты

 Возможность использования существующей транспортной инфраструктуры для заправки транспортного средства

  Простота эксплуатации: в частности, метанол не улетучивается при транспортировке

 Возможно создание технологии производства биометанола в промышленных масштабах, что увеличит его использование в ТЭ

 Высокая себестоимость производства метанола с помощью существующих технологий

 Используемые в качестве катализаторов в ТЭ драгоценные металлы (платиноиды) значительно повышают рыночную стоимость установок и вырабатываемой ими энергии






Международные
научные публикации
Международные
патентные заявки

Уровень развития
технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



ДВИГАТЕЛИ НА ДИМЕТИЛОВОМ ЭФИРЕ 

Серьезным конкурентом традиционным видам ископаемого и синтетического топлива и основной альтернативой дизелю может стать диметиловый эфир (ДМЭ). В сравнении с дизельным топливом эфир лучше горит и более экологичен (не содержит серы, в течение суток полностью разлагается в атмосфере на воду и углекислый газ). Это в целом более чистое топливо, некоррозионноактивное, нетоксичное, не вызывает мутаций, в том числе канцерогенного характера. 

Сегодня ДМЭ производится из переработанного угля, природного газа, биомассы, бытовых и промышленных отходов. Также разрабатывается синтетическое биотопливо второго поколения (BioDME), которое может быть изготовлено из лигноцеллюлозной биомассы. Преобразовать дизельный двигатель в ДМЭ-двигатель можно без больших затрат, что будет стимулировать массовое распространение технологии. 





 

Эффекты

    Значительное сокращение уровня вредных выбросов с отработавшими газами: оксидов азота в 3-4 раза, углеводородных соединений — в 3 раза, угарного газа — в 5 раз, при практически бездымной работе двигателя во всех режимах

 Повышение экономичности ДВС (до 5%) и его КПД по сравнению с работой на дизельном топливе

 Оптимизация расходов на производство и транспортировку топлива (сократятся в 10 раз относительно показателей сжиженного природного газа)

 Легкое преобразование ДМЭ в бензин, характеризующийся высокой стабильностью и повышенным экологическим качеством, минимальным содержанием нежелательных примесей (отсутствие серы, незначительное содержание бензола (0,1% при норме 1%), непредельных углеводородов (~1%))

 Создание дополнительных рабочих мест в добывающей промышленности благодаря развитию производства диметилового эфира из ископаемого сырья (природный газ, уголь) 

Оценки рынка

$9,7  млрд

к 2020 г. достигнет объем глобального рынка ДМЭ (среднегодовые темпы роста 16-19% в 2015-2020 гг.)

Драйверы и барьеры

 Ужесточение экологических стандартов

 Наличие соответствующей инфраструктуры: применение ДМЭ не требует серьезной конструкционной доработки дизельных двигателей и установки специальных фильтров. Использование ДМЭ на автомобилях с ДВС возможно даже при 30%-м его содержании в топливе без трансформации систем питания и зажигания двигателя.

 Масштабная сырьевая база: сырьем для производства ДМЭ является природный газ, доказанные запасы которого в России по состоянию на 2015 г. остаются крупнейшими в мире.

  Ряд нерешенных проблем с хранением ДМЭ

  Сравнительно высокая рыночная цена ДМЭ относительно других видов топлива

 При производстве ДМЭ затрачивается существенно больший объем сырьевого газа, чем для других топливных продуктов с эквивалентной теплотворной способностью

  При меньшей в 1,5 раза полноте сгорания по сравнению с дизельным топливом увеличивается расход ДМЭ в 1,5–1,6 раза

  ДМЭ является наркотическим галлюциногенным веществом






Международные
научные публикации
Международные
патентные заявки

Уровень развития
технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 


Libertine рядом со свободнопоршневым двигателем. Для дизеля

это может быть последний шанс.

Честно говоря, двигатель внутреннего сгорания - удивительно архаичное изобретение. Как это возможно, что во времена искусственного интеллекта, сопровождающего нас в наших домах, и серьезных планов по колонизации космоса, одним из основных элементов нашей среды по-прежнему остается механизм, изобретенный в 1876 году?

Ведь последние 145 лет так называемые англ.Отто, поршневой тепловой двигатель с искровым зажиганием, в котором внутренняя детонация топливовоздушной смеси приводит к возвратно-поступательному движению и, таким образом, вращению коленчатого вала, в лучшем случае был улучшен в деталях.

Сегодня политики и производители автомобилей склоняются к решению полностью отказаться от двигателей внутреннего сгорания. С 2030 года в салонах многих брендов можно будет выбирать модели с любым приводом, при условии, что он электрический. Автомобили, оснащенные только этими двигателями, также будут доступны для продажи на все большем количестве рынков.

Двигатель Maserati Nettuno с инновационными камерами сгорания уже производится на Modena

.

(фото Maserati)

Последние достижения в области двигателей внутреннего сгорания, однако, заставляют задуматься о том, не было ли такое решение принято слишком поспешно и не выливает ли малыша из ванны при полном отказе от приводов на жидком топливе. Сколько еще предстоит сделать в этой области, показывают, например, описанный нами в прошлом году блок Freevalve без распределительных валов или недавно представленный и тщательно проанализированный нами двигатель Maserati Nettuno с камерой сгорания.

Эти разработки показывают, что для двигателей внутреннего сгорания все еще возможно гораздо более эффективное и чистое будущее. Это важная новость не только для энтузиастов классического автомобилестроения, но и для мировой экономики, которая все еще может столкнуться с огромными проблемами на пути к революционным изменениям в области перехода на электромобильность.

Двигатель со свободным поршнем: теперь это имеет больше смысла, чем когда-либо прежде

Электрификации приводов новых автомобилей больше нельзя избежать, но двигатели внутреннего сгорания могут играть важную роль в будущем .Это произойдет, если победит мягкий промежуточный вариант между ДВС и электроприводами - подключаемые гибриды (с возможностью зарядки от розетки и преодоления дневного пути только на электричестве) или автомобиль с бортовым электрогенератором.

VW Passat GTE против BMW 330e: когда автопарки хотят спасти мир

Подключаемые гибриды все время занимают экзотическую нишу на нашем рынке, но есть класс, в котором они могут быть приняты быстрее, чем в ...

Европейский Союз хотел бы, чтобы плагины стали стандартным решением на наших дорогах в ближайшие годы, но последнее только что получило ценный аргумент в свою пользу.Машины с электрогенератором - интересное решение. Двигатель внутреннего сгорания механически не связан с колесами, а только вырабатывает энергию, которая заряжается от бортовой аккумуляторной батареи.

Это был принцип BMW i3 REx или Opel Ampera (почти - на высоких оборотах двигатель напрямую вращал колеса). Всего несколько недель назад новый Nissan Qashqai вернулся к этой концепции, а со следующего года он будет доступен на польском рынке с двигателем e-Power.

На данный момент существует компромисс к этому решению, а именно двигатель внутреннего сгорания в этой форме был изобретен для привода колес и в других ролях не обязательно является наиболее эффективным инструментом . Однако это может измениться, если в качестве генератора используется так называемый двигатель со свободным поршнем. Эта идея не нова, и в последние годы она разрабатывалась в основном с учетом тяжелой промышленности. Однако его гораздо меньшие версии идеально подходят в качестве генератора энергии внутреннего сгорания в легковом автомобиле.

Строительство бортового электрогенератора в BMW i3 REx (2013)

(фото: BMW)

Принцип свободного поршневого двигателя на первый взгляд кажется абстрактным, но в конечном итоге довольно прост. Как и в классическом агрегате, поршень совершает возвратно-поступательное движение в цилиндре. Однако здесь он не передается через шатун на коленчатый вал, что привело бы к вращению приводного вала. Здесь нет ни шатуна, ни вала.Вместо этого он используется для зарядки аккумулятора.

Как это возможно? Внизу поршня вместо шатуна находится ... второй поршень с зеркальным отображением камеры сгорания на боку. И такой набор из двух поршней в одном более длинном цилиндре работает в горизонтальной ориентации, двигаясь слева направо. Таким образом, на практике это двухтактный двигатель (ход левого поршня совпадает с ходом правого - и наоборот).

В этом ходе используется набор постоянных магнитов, встроенных в поршни и катушки, установленные в корпусе цилиндра, которые вместе действуют так же, как статор и ротор в генераторе.При такой конструкции двигатель сначала преобразует тепловую энергию в механическую (детонация смеси в камере сгорания), а затем механическую в электрическую энергию (возвратно-поступательное движение поршня с магнитом по катушкам).

Поперечный разрез свободнопоршневого двигателя от Libertine

(фото: Libertine FPE)

Хотя такой двигатель не имел бы смысла в обычном автомобиле, он был бы идеальным генератором энергии для зеленого автомобиля будущего.Список его преимуществ очень длинный. Самое главное, что это устройство намного проще (а значит, потенциально дешевле), чем используемые сегодня двигатели внутреннего сгорания. Отсутствие элементов передачи энергии означает, что внутри меньше движущихся частей, что делает всю конструкцию меньше и легче.

Отсутствие боковых сил, действующих на поршень, также устраняет необходимость в более дорогих и сложных поршневых уплотнениях и решениях для уравновешивания вибраций, поскольку их практически нет.Двигатель со свободным поршнем поддерживает практически постоянную рабочую скорость независимо от нагрузки благодаря несравненно более простой настройке времени открытия клапана, степени сжатия (путем управления моментом зажигания) или даже хода поршня.

Сегмент двухпоршневых двигателей Libertine в корпусе

(фото: Libertine FPE)

Кроме того, что, возможно, является наиболее важным с точки зрения будущих задач автомобильной промышленности, такой двигатель также отлично подходит для работы с любым типом топлива, не только с неэтилированным бензином или сжиженным нефтяным газом, но также с водородом или биотопливом с высоким содержание биоэтанола.

Проблема алкоголя в двигателе внутреннего сгорания

Биоэтанол теоретически может решить все экологические проблемы автомобильной промышленности. Он работает как обычный неэтилированный бензин, но на самом деле это почти чистый этанол , полученный из биомассы или биоразлагаемых отходов (отсюда его второе название - сельскохозяйственный спирт).

Так в чем проблема? Двигатели внутреннего сгорания плохо переносят спирт, поскольку он обладает охлаждающими свойствами, которые нежелательны в камерах сгорания и на стенках цилиндров.Вот почему & hairsp; - & hairsp; а пока & hairsp; - & hairsp; заправочные станции можно найти на традиционных видах топлива с 5% или максимум 10% примесью биокомпонентов.

Оказывается, нет проблемы, которую стартап не хотел бы решать. В данном случае это британская компания Libertine. Его цель заключалась в том, чтобы сделать двигатели со свободным поршнем подходящим решением для крупномасштабных применений. За последние годы произошло два важных нововведения.

Принципиальная схема двигателя Libertine

(фото Libertine)

Первый - это реорганизация поршней в цилиндре. В отличие от ранее представленных двигателей со свободным поршнем, в которых детонация происходила с обеих сторон цилиндра, что приводило к перемещению двух жестко связанных поршней, британцы предлагают обратное. По их конструкции смесь детонирует в центре цилиндра, что приводит к выбросу двух поршней в противоположных направлениях.

Затем они отражаются от сжатого воздуха в конце цилиндра, действуя как пневматическая пружина. Затем поршни меняют направление хода и снова устремляются навстречу друг другу. Непосредственно перед их столкновением происходит еще один взрыв, повторяющий весь цикл работы, похожий на хлопки в ладоши.

Решение Libertine разработано, чтобы выделиться среди обычных двигателей внутреннего сгорания своей высокой удельной мощностью (типичной для двухтактных двигателей) и еще более простой конструкцией с меньшим количеством движущихся частей.Что касается экологии, то благодаря разработке более точных методов управления поршнями в цилиндре и плавному изменению скорости британцам удалось добиться стабильной работы даже на так называемом «влажном» биоэтаноле, т.е. процентов. биотопливо и 10 процентов. вода.

Опытный образец свободнопоршневого двигателя во время испытаний

(фото Libertine)

Хотя эта новость звучит слишком фантастично, чтобы быть правдой, британский стартап недавно нашел партнера, который обеспечил предприятию доверие и необходимые ему возможности.Это немецкий концерн Mahle, который работает над рядом новых типов двигателей внутреннего сгорания и предоставляет свои решения крупнейшим производителям автомобилей в мире или Формуле-1. За последние два месяца 2020 года он провел более 100 испытаний двигателя. новый тип установки в своих немецких лабораториях. 25 марта 2021 года правительство Великобритании решило предоставить компании грант в размере 2,6 миллиона фунтов стерлингов на дальнейшие исследования, которые обязательно принесут интересные результаты.

Этот факт показывает, что даже если мы не знаем, что нас ожидает в будущем, дней двигателей внутреннего сгорания не обязательно должны быть предрешенными .Более того, это также доказывает, что транспортная отрасль действительно может стать экологической в ​​ближайшем будущем, и долгожданный прорыв может произойти с наименее ожидаемой стороны.

Следите за нами в Новостях Google:

.

Польский метод для двигателя

Поршневой двигатель внутреннего сгорания с типичной системой кривошипа считается замкнутой и усовершенствованной конструкцией, по крайней мере, с точки зрения основного принципа работы и хода последующих этапов работы. Дизайнеры осознают существенные недостатки этого решения, считая их очевидными, что их невозможно устранить.

Одним из этих недостатков является невыгодная последовательность движения поршня и кривошипа в сборе против повышения и падения давления над поршнем.Кажется нормальным, что воспламенение происходит непосредственно перед верхней точкой поворота поршня, а максимальное давление в камере сгорания составляет около десятка градусов вращения коленчатого вала сразу после верхней точки поворота поршня.

Следствием этого является возникновение самых высоких газовых сил в положении системы кривошипа, при котором они создают минимальный крутящий момент, измеренный на коленчатом валу (высокое усилие, небольшое плечо).Это вызывает значительные механические потери из-за трения поршня о цилиндр, трения в подшипниках и изгиба компонентов системы кривошипа. Эта энергия не может быть восстановлена ​​на следующих этапах работы двигателя, в результате чего средний крутящий момент, полученный на валу, является относительно низким, а эффективность двигателя очень ограничена.

В настоящее время усилия большинства конструкторов сосредоточены на повышении полноты сгорания и снижении очевидных потерь на трение в механизме двигателя.В результате КПД традиционных поршневых двигателей с искровым зажиганием уже превышает 30%, а с воспламенением от сжатия достигает более 40%.

Специалисты не рассматривают такую ​​возможность, резюмируя ее одним словом: невозможно! Потому что, что такое поршневой двигатель, может увидеть каждый...

Между тем, однако, есть изобретатели, назовем их провидцами, которые не принимают нынешние решения как неизменные и пытаются как-то сдвинуть это максимальное давление на поршень.Интересная идея - строительство Збигнева Станца. Этот двигатель, называемый агрегатом с подвижной камерой сгорания, является особенным в наших польских условиях, потому что его предварительный образец был создан (изобретателем) из металла и работает, а также запатентован. Однако необходимы серьезные исследования, и тут все усложняется ...

Двигатель штатный, камера необычная

Пожарная машинаВ основе Stańca лежит самый обычный поршневой агрегат с традиционным кривошипно-шатунным механизмом. Рабочая модель построена на базе двигателя WSK 125cc. Особенность конструкции заключается в том, что в то время как традиционная неподвижная головка с камерой сгорания расположена над поршнем, здесь размещается второй поршень того же диаметра, совершающий определенные движения, отличные от основного поршня. Пространство между головками обоих поршней и есть подвижная камера сгорания.

Здесь легко догадаться, что было задумано конструктором: кратчайшее расстояние между поршнями должно быть в определенном месте (измеряется в градусах вращения вала), а не в верхней точке поворота основного рабочего поршня, но когда отклонение главного кривошипа позволяет получить высокий мгновенный крутящий момент.

Серьезной проблемой было получить управляемое движение второго поршня, который на самом деле является стенкой головки. Это было достигнуто системой из двух кулачков, приводимых от коленчатого вала, определяющих движение соответствующего рычага.Этот рычаг имеет дополнительный рычаг, перемещающий толкатель, который, в свою очередь, посредством другого двустороннего рычага выполняет движение указанного поршня "головки". Его ход намного меньше, чем у основного поршня, а его движение определяется профилями вышеупомянутых кулачков. Температура вспышки, конечно, должна быть адаптирована к фактическому времени, при котором смесь должна эффективно сгорать.

На практике устройство не очень сложное.Выбирая профиль кулачков и геометрию рычага, который они перемещают, можно довольно свободно формировать движение «головного» поршня. Таким образом, можно перемещать точку, в которой на поршень возникает наибольшее давление, а также изменять кривую роста давления. Более того, если ось второго (на наших рисунках и фотографиях верхнего двойного рычага) рычага установлена, например, на регулируемом эксцентриковом устройстве, может быть достигнуто динамическое изменение степени сжатия, что может дополнительно повысить эффективность двигателя. .

Не только преимущества

Ожидаемое преимущество двигателя с подвижной камерой сгорания заключается, прежде всего, в большей эффективности благодаря более эффективному созданию крутящего момента за счет давления газа над поршнем.Изобретатель также надеется расширить процесс образования и сжигания смеси, что должно повысить эффективность сгорания на более высоких оборотах, особенно если двигатель работает с воспламенением от сжатия. Другими потенциальными преимуществами являются возможность динамического управления степенью сжатия - можно получить больший КПД или спроектировать настоящий многотопливный двигатель.

Есть и видимые недостатки - прежде всего большая сложность конструкции.Также представляется трудным разработать такой двигатель с управлением забором заряда, отличным от края поршня (без свободной зоны камеры сгорания), и поэтому могут возникнуть проблемы с чистотой выхлопных газов.

Существующий двигатель был протестирован лишь частично - измерения наведенного давления были произведены во время работы, что подтверждает предварительные предположения.Однако, несмотря на то, что идея существует уже несколько лет, никого не удалось убедить испытать двигатель на динамометре, поэтому неизвестно, слишком ли велики потери в приводе второго поршня и действительно ли он участвует в создании крутящего момента, потому что принимает, очевидно.

На самом деле, мы ничего не знаем о том, как должна быть реализована мощность в таком двигателе и какой должна быть форма камеры сгорания.Предложенная изобретателем сферическая форма днища поршня вызывает большие сомнения.

Конечно, следующим вопросом будет технология производства, выбор материала, расчеты прочности и т. Д.Другими словами - идея есть, может быть, реальная, нет заинтересованных лиц, чтобы ее проверить. Будет ли кто-то заинтересован не только в надежной и быстрой прибыли?

.

Design and Engineering Structures - Двухтактный двигатель внутреннего сгорания нового поколения


Разве никто из нас не мечтал о маленьком, долговечном, динамичном и дешевом двигателе, который благодаря своей действительно мощной мощности и значительному крутящему моменту доставлял огромное удовольствие от вождения? Двигатель, который позволил бы даже начинающему водителю плавно заводиться на неприлично холостых оборотах, который не сжигал бы сотни литров топлива в ожидании смены света и не оставлял бы следов черных пятен при парковке перед домом? Разве слесари и сервисные специалисты не мечтают о легкодоступном двигателе, лишенном клиновых ремней, легко снимаемом вверх, без необходимости разбирать половину машины? Такой двигатель только что строится.

Яцек Маевски

В течение многих лет проектные работы были сосредоточены на повышении производительности двигателя. Они пошли в двух направлениях. Первый - увеличить обороты двигателя. Использовалась простая логика. Чем больше количество рабочих ходов в единицу времени, тем больше мощность. К недостаткам можно отнести борьбу с силами инерции, вибрации, необходимость точной балансировки, быстрый износ деталей, повышенную температуру и проблемы с тяжелыми заправочными цилиндрами, особенно в диапазоне высоких скоростей.Вторым направлением было повышение давления газов в цилиндрах, на которое больше всего повлияли компрессоры, столь популярные сегодня. К недостаткам можно отнести повышенные затраты, повышенные механические нагрузки на все движущиеся части, дорогое обслуживание, необходимость использования сложных, дорогих материалов. Оба пути, хотя и были эффективными, требовали повышенной точности и приводили к резкому увеличению стоимости отдельных деталей. И здесь возникает ряд вопросов. Разве не было бы выгоднее использовать большее количество рабочих ходов за цикл вместо увеличения оборотов двигателя? Разве не было бы выгоднее использовать простой и легкий вал вместо массивного и сложного коленчатого вала, который передает огромные вибрации и скручивающие нагрузки и передает скручивающие нагрузки на другой, параллельный приводной вал? Не лучше ли иметь простой, практически бесплатный и безотказный компрессор вместо дорогого, аварийного и капризного? Широко известно, что двухтактный двигатель может генерировать вдвое больше мощности и крутящего момента, чем четырехтактный двигатель.Направление известно не один год. Работы по созданию экологически чистого двухтактного двигателя внутреннего сгорания ведутся уже более века. К сожалению, задача, видимо, оказалась крайне неприятной, так как даже самые светлые умы были потеряны в этой области.


Крутящий момент двухтактного четырехцилиндрового двигателя нового поколения


Крутящий момент современного четырехтактного четырехцилиндрового двигателя внутреннего сгорания

В прошлом году я писал в «Projektowania i Konstrukcji Inżynierskich» обо всей концепции моего нового двухтактного двигателя.С тех пор, когда работа над его дизайном все еще продолжается, я внес в него множество доработок, поэтому новый двигатель выглядит намного интереснее. И хотя он находится на стадии проектирования, заложенный в нем потенциал не должен остаться незамеченным сильными мира сего, которые определяют направления развития автомобилестроения. Однако представить этот движок на более широком форуме непросто. Вряд ли кто-то склонен верить, что где-то на окраине Европы кто-то мог придумать что-нибудь интересное.И если есть лозунг, что кто-то только что разработал новый двигатель, такое сообщение немедленно принимается смехом, которому могли бы позавидовать многие кабаре. Я бы сам посмеялся, если бы кто-нибудь из моих коллег сказал мне нечто подобное.
Процесс патентования занимает много времени. Наличие патентных свидетельств является безусловным основанием и становится своего рода пропуском к переговорам с представителями автомобильных концернов. До сих пор робкие попытки наладить такие контакты, к сожалению, не принесли ожидаемых результатов.Это, возможно, даже понятно, поскольку конструкторские бюро засыпают всевозможными идеями, и их начальство обычно не хочет ими возиться. Подавляющее большинство таких идей - это лунные видения «сумасшедших изобретателей». Конечно, есть и более ценные и заслуживающие внимания решения, но, опасаясь угрозы последующих судебных разбирательств, штрафов или убытков, компании опасаются использовать несанкционированные или недостаточно документированные решения. Я думаю, что после получения нужных документов можно будет активизировать процесс публикации и что время для более широкого представления этого двигателя постепенно приближается.Может быть, даже собрав соответствующие средства, удастся построить прототип. По опыту знаю, что работающий движок, к которому можно потрогать и услышать, говорит гораздо больше, чем даже самые красиво представленные проекты на бумаге. Хотя на самом деле сегодня только интересные и достоверные результаты тестирования могут привлечь внимание наиболее заинтересованных, то есть производителей. Возможно, на это тоже будет время.


Двухтактный двигатель внутреннего сгорания нового поколения


Таковы характеристики двухтактного двигателя нового поколения на современном этапе развития.

Тактико-технические характеристики

  • Двухтактный двигатель на чистом топливе, соответствует всем экологическим нормам.
  • Мощность и крутящий момент в два-три раза превышают показатели современных двигателей с такими же параметрами (масса, мощность, степень сжатия, обороты и т. Д.).
  • Малая занимаемая площадь и высокое соотношение мощности и веса.
  • КПД в пределах 60% (современные двигатели достигают примерно 40%).
  • Огромная динамика и крутящий момент даже на низких оборотах.
  • Стабильная и «плавная» работа двигателя во всем диапазоне оборотов, начиная с 400 об / мин.
  • Свободная скорость около 300 об / мин (в настоящее время 900 об / мин).
  • Низкий расход топлива, особенно в городском цикле.
  • Несмотря на в несколько раз большую мощность и крутящий момент, механические нагрузки на отдельные детали не превышают нагрузки на современные детали двигателя.
  • Возможность без обязательства менять моторное масло в течение всего срока службы.
  • Возможность значительного увеличения срока службы коленчатого вала и вкладышей подшипников за счет разделения систем смазки вала и поршневых колец и
  • с использованием чистого моторного масла, не содержащего продуктов сгорания и растворенного нагара.
  • Значительно более длительный срок службы цилиндров, поршней и колец благодаря устранению бокового давления поршней на цилиндры.
  • Возможность использования специального масла для смазки только поршневых колец (с повышенной способностью растворять и смывать нагар).
  • Без клиновых ремней.
  • Отсутствие проблемных утечек масла из двигателя, даже при поврежденных уплотнениях, благодаря устранению перепадов давления в камере картера и их замене вакуумом.
  • Простое обслуживание благодаря удобному доступу к периферийным устройствам (стартер, генератор, гидроусилитель руля и водяной насос).
  • Простой, дешевый, удобный в использовании, безотказный вариант наддува двигателя.


Рабочие фазы нового двигателя

Технические характеристики

  • Двухтактный четырехцилиндровый двигатель на чистом топливе, построенный по поперечной схеме.
  • Значительно более высокая мощность и крутящий момент достигается за счет удвоения количества рабочих ходов в единицу времени.
  • Повышенный крутящий момент и высокая равномерность работы двигателя также являются результатом использования инновационного коленчатого вала, который обеспечивает взаимное перекрытие сил сгорания (для современных двигателей эти силы действуют импульсами, причем интервалы между ними достигают времени их работы) .
  • Более высокий КПД двигателя в результате уменьшения внутреннего сопротивления, особенно отсутствия бокового давления поршней на стенки цилиндра, и увеличения эффективного времени воздействия сил сгорания на шейки коленчатого вала.
  • Отсутствие повышенных механических нагрузок на отдельные детали при гораздо большей мощности двигателя является результатом благоприятного распределения сил от дополнительных рабочих ходов в местах и ​​временах, где они не происходили раньше.


Система смазки поршневых колец

Коленчатый вал

  • Легкий коленчатый вал только с двумя коленчатыми валами, не нагруженный крутящим моментом (крутящий момент передается параллельным приводным валом).
  • Увеличенное время эффективного сжатия сил сгорания, передаваемых на отдельные шейки коленчатого вала, составляет 150–160 ° CA (для традиционного коленчатого вала это значение составляет 100–110 °).
  • Шатуны заменены на ползуны с возвратно-поступательным движением.
  • Четыре полностью нагруженных кожуха шатунов используются для двух коленчатых валов коленчатого вала (современные четырехцилиндровые двигатели с четырьмя кривошипами коленчатого вала каждый имеют восемь кожухов шатунов, из которых только четыре нагружены).
  • Вал смазывается маслом с помощью обычного масляного насоса.

Поршень и кольца

  • Плоские легкие поршни, лишенные традиционных боковых накладок, не требуют шатунов или пальцев.
  • Благодаря движению ползунов в гильзах поршни не нужно направлять и не оказывают боковое давление на стенки цилиндра.
  • Днища поршней охлаждаются холодным воздухом, каждый раз всасываемым в камеру предварительного сжатия, а их внутренняя часть охлаждается маслом, используемым для смазки колец.
  • Каждый поршень имеет одно смазочное кольцо и два набора скребковых уплотнений. Смазочное кольцо расположено в центре между противоположными наборами скребков и уплотнительных колец.
  • Регулируемое масло под давлением подается в смазочные кольца, а его избыток сливается через каналы, расположенные внутри поршней и ползунов.
  • Избыточное масло нагнетается в камеру кривошипа или отдельный резервуар с помощью вакуума или центробежного механизма.
  • Для смазки колец можно использовать отдельную систему.


Система смазки поршневых колец с использованием отдельного дозатора и отдельного масляного резервуара

Воздухозаборник

  • Чистый воздух засасывается в камеру предварительного сжатия и впускной канал цилиндра.
  • Камера сгорания, расположенная над поршнем, взаимодействует с камерой предварительного сжатия, расположенной под поршнем соседнего цилиндра под углом 90 °.
  • Обе эти камеры соединены впускным каналом, который также является резервуаром предварительно сжатого воздуха, не использовавшегося в предыдущем цикле.
  • Сдвиг камер сгорания и камер предварительного сжатия на 90 ° в фазе работы камер сгорания и начальное сжатие на 90 ° обеспечивает идеальную синхронизацию времени, количества и скорости вытесняемого воздуха, а также эффективная замена заряда при нижнем возврате поршня.
  • В камеру сгорания подается воздух, который нагнетается под давлением поршнем соседнего цилиндра.Поток чистого воздуха выталкивает остатки выхлопных газов, проветривает камеру сгорания и заряжает ее новой дозой чистого воздуха.
  • После того, как цилиндр предварительно нагружен и выпускной клапан закрыт, топливо впрыскивается в все еще движущийся воздушный поток.
  • По окончании впрыска впускной клапан закрывается. По мере того как воздух продолжает перекачиваться и впускной клапан закрывается, во впускном канале накапливается избыточный воздух.
  • Для обеспечения надлежащего потока воздуха, защиты от его возврата, нейтрализации явления «вредная емкость камеры предварительного сжатия» эта камера была оборудована двумя клапанами с регулируемым давлением (NC).Оба клапана пропускают воздух только в камеру сгорания.


Форсировать двигатель с увеличенной камерой предварительного сжатия

Перезарядка

  • Простым и недорогим вариантом форсирования двигателя является камера предварительного сжатия гораздо большего размера, чем камера сгорания. Это было достигнуто за счет простой конструкции двойного поршня разного диаметра.
  • Boost работает во всем диапазоне оборотов, начиная с холостого хода (в настоящее время эффект наддува появляется только на более высоких оборотах).
  • В случае резкого увеличения оборотов двигателя реакция наддува происходит немедленно (без какой-либо задержки, как в современных двигателях).
  • Конструкция не восприимчива к внезапной остановке двигателя на высоких оборотах (что в настоящее время часто приводит к повреждению подшипников турбокомпрессора).
  • Нет необходимости ждать, пока турбокомпрессор остынет после интенсивной работы (двигатель можно выключить в любой момент, не подвергая компрессор внезапному отсутствию смазки или перегреву).
  • Необязательно использовать дорогой интеркулер.
  • Решение безотказно и не требует соблюдения каких-либо процедур.
  • Он также не требует дополнительного привода или сложного обслуживания.

Краткое содержание
Благодаря плоской форме двигателя и оси вращения, перпендикулярной его поверхности, двигатель идеально подходит для использования в самолетах, лодках и мотоциклах, в частности на вертолетах, где из-за огромной инерции гребного винта, плавная и без рывков работа двигателя.Однако он был разработан в основном для легковых автомобилей. Благодаря своей форме прекрасно адаптируется под капот автомобиля. Вертикальная ось вращения вынуждает передавать привод вертикально через муфту, коробку передач на дифференциал, где направление меняется на горизонтальное. Плоский двигатель с легким доступом ко всем цилиндрам, шестерня в верхней части двигателя с периферийными механизмами, расположенными вокруг него, простота установки и обслуживания двигателя - дополнительные преимущества.Однако наиболее важными характеристиками являются небольшие размеры, высокая мощность и крутящий момент. Безотказный, дешевый и динамичный двигатель с огромной мощностью и огромным крутящим моментом, который проявляется даже на самых низких оборотах, - это, наверное, самая большая мечта каждого водителя. Современные атмосферные двигатели мощностью 2000 куб.см достигают мощности в 130-150 л.с. Двухлитровый двигатель нового поколения при сопоставимых параметрах мог легко достичь мощности 300-450 л.с., а с наддувом даже 1000 л.с. Поскольку рядовому пользователю такая огромная мощность не нужна, автомобили с безнаддувными двигателями мощностью 100-130 л.с. могли иметь чрезвычайно маленькие, очень дешевые и экономичные двигатели объемом всего 350-500 куб. См.В грядущую эру гибридных автомобилей, где двигатель внутреннего сгорания играет лишь вспомогательную роль, его малые габариты, малый вес и высокий КПД приобретают особое значение. В автомобилях будущего, вероятно, нет места для больших агрегатов, поэтому будущее выглядит довольно розовым перед двухтактным двигателем следующего поколения.
Как я уже упоминал, разработка двигателя продолжается, и я надеюсь, что скоро смогу поделиться с вами новыми концепциями и улучшениями, над которыми я работаю прямо сейчас.

Яцек Маевски

Статья

из номера 7/8 (106/107) июль-август 2016 г.

.

Toyota FPEG - (не) ожидаемая смена ролей

фото Toyota Он не похож на двигатель внутреннего сгорания, но его роль не совсем такая, как у обычного поршневого агрегата

Принцип, согласно которому в автомобильной технике не было изобретено в течение как минимум нескольких десятилетий ничего принципиально нового. но только «выкапывая» себя »и совершенствуя разработанные ранее решения, японцы добрались до старой как мир (по крайней мере, как мир двигателей внутреннего сгорания) идеи двигателя со свободным поршнем, о котором мы писал некоторое время назад .Тогда мы подумали, что это полная экзотика без коммерческого будущего, и вот - сюрприз! Простота такого устройства заключается в устранении движущихся частей (шатуны и коленчатый вал) и интеграции генератора с конструкцией двигателя, что минимизирует потери энергии (которые традиционная система теряет дважды - сначала в двигателе внутреннего сгорания, затем в точке связь с генератором). Короче говоря, рабочий поршень движется как сердечник постоянного магнита в обмотке катушки .

Так как все должно иметь профессиональное название, Toyota предложила FPEG или линейный генератор со свободнопоршневым двигателем. Инженеры сделали блок как можно меньше, чтобы в более крупных моделях автомобилей можно было легко собрать в несколько блоков, чтобы обеспечить постоянную подачу нужного количества движущей силы . Если это решение пойдет в серийное производство, то вопрос о количестве цилиндров полностью изменит смысл ... И можно идти в производство - сейчас идут испытания, в ходе которых устанавливают двухцилиндровый ФПЭГ, каждый мощностью 13 л.с., без проблем вырабатывали достаточно энергии, чтобы автомобиль размером с Yaris двигался с постоянной скоростью 120 км / ч.Это факт, что поездка в таких условиях требует небольшой мощности и крутящего момента, но, вероятно, повышение производительности - лишь вопрос времени.

Поговорим подробнее о конструкции самого элемента выхлопа. Он содержит типичных двухтактных компонента, например, впускные клапаны (только для воздуха, а не для топлива) в виде окон в стенках цилиндра . Грибовидные клапаны в верхней части камеры сгорания также присутствуют, но они работают только как выпускные клапаны, поскольку впрыск топлива является прямым.Что интересно во всем устройстве, так это то, что поршень имеет камеру сгорания только с одной стороны. По-видимому, ничего необычного, потому что это имеет место в любом обычном двигателе, за исключением того, что, как правило, поршень прикреплен к шатуну и коленчатому валу, поэтому он возвращается наверх за счет собственной инерции, а здесь нет механической связи и поршень должен что-то «отскочить». Двигатели со свободным поршнем часто имеют камеры сгорания по обе стороны от двигателя (поршень имеет форму «толкаемого» цилиндра в цилиндре между одной камерой и другой, что является частным случаем оппозитного агрегата), тогда как FPEG имеет газовую подушку позади поршня (с клапаном, регулирующим давление), который мягко замедляет его и «отправляет» обратно.

Среди преимуществ такого «патента» Toyota упоминает высокий тепловой КПД, малое трение и низкую вибрацию. Таким образом, кажется, что, несмотря на природу сгорания, FPEG успешно борется со всеми самыми большими недостатками типичного поршневого двигателя , который, к сожалению, посылает большинство своих эффектов «свистом» из-за рассеиваемой избыточной тепловой энергии. Кроме того, FPEG должен действовать только как расширитель диапазона, поэтому он вступит в действие только после того, как будут исчерпаны запасы энергии в аккумуляторных батареях автомобиля, а это означает, что любые потери, возникающие в результате его работы, в любом случае будут ограничены.Поскольку , а не небольшая независимая компания, а такой гигант, как Toyota , отвечала за разработку технологии свободного поршня, можно надеяться, что FPEG скоро (хотя и не раньше, чем через несколько лет) поступит в серийное производство. машины. Может ли это быть возвращение к простоте автомобильного дизайна? Держим пальцы скрещенными!

.

Двигатели внутреннего сгорания, их типы. Термодинамические процессы

Двигатель внутреннего сгорания - это механизм, в котором движение поршня вызывается давлением выхлопных газов, которое возникает в результате сгорания топливовоздушной смеси в центре цилиндра двигателя. Поршневые двигатели внутреннего сгорания с возвратно-поступательным движением, также называемые поршневыми двигателями внутреннего сгорания, используются повсеместно, в меньшей степени с вращающимся поршнем. В тактных двигателях поршень, уплотненный поршневыми кольцами, закрывает цилиндр двигателя; возвратно-поступательное действие поршня заменяется кривошипно-шатунным механизмом за счет вращения коленчатого вала; подача смесей (или воздуха) в цилиндры двигателя и отвод из них выхлопных газов регулируются механизмом газораспределения.В четырехтактных двигателях внутреннего сгорания (это тип двигателя внутреннего сгорания, поршень которого совершает четыре возвратно-поступательных движения за один рабочий цикл). Рабочий цикл происходит в следующие 4 хода поршня, что соответствует 2 оборотам коленчатого вала. ; в двухтактных двигателях (это тип двигателя внутреннего сгорания, в котором четыре рабочих фазы: впуск, сжатие, работа и выпуск, выполняются за два такта (от верхнего крайнего положения поршня до нижнего). цикл происходит на следующих 2 тактах поршня, что соответствует 1 обороту коленчатого вала; двухтактные двигатели по сравнению с четырехтактными имеют менее сложную конструкцию, проще в обслуживании и ремонте, дешевле.У них также есть недостатки, заключающиеся в большем расходе топлива и загрязнении воздуха.

Четырехтактный двигатель

Рис. Рабочая модель четырехтактного двигателя.

Ход всасывания - Поршень (1) перемещается вниз из верхнего в нижнее конечное положение. При этом всасывающий клапан (2) открыт, так что воздух или топливовоздушная смесь могут всасываться.

Ход сжатия - поршень перемещается в крайнее верхнее положение.Воздух или топливовоздушная смесь сжимается до необходимого давления. И впускной (2), и выпускной (3) клапаны закрыты.

Рабочий ход - до достижения верхнего конечного положения в дизельных двигателях и двигателях с электронным впрыском топлива выполняется впрыск топлива и воспламенение от сжатия, которое вызывается искрой. Горящее топливо вызывает быстрое повышение давления, которое заставляет поршень перемещаться в крайнее нижнее положение. Оба клапана: впускной (2) и выпускной (3) закрыты

Выпускной ход - поршень перемещается в крайнее верхнее положение при открытом выпускном клапане.Газообразные продукты сгорания топлива (выхлопные газы) выталкиваются из рабочего пространства двигателя.

Двухтактный двигатель

Рис. Модель работы двухтактного двигателя.

Такт сжатия - на первой стадии такта сжатия рабочая поверхность двигателя ополаскивается (1). Затем выхлопные газы, образовавшиеся в предыдущем рабочем цикле, вытесняются через выхлопной канал (2), а топливная смесь, ранее собранная в кривошипном пространстве (4) двигателя, течет к рабочей поверхности через межкамерный канал (3).На следующей стадии такта сжатия поршень (5), который также выполняет функцию клапана, закрывает выпускной и межкамерный каналы, одновременно открывая всасывающий канал (6). Когда топливо сжимается в камере сгорания, новая порция топливной смеси течет через всасывающий канал в картер двигателя.

Рабочий ход - К тому времени, когда поршень достигает верхнего мертвого положения, топливо сгорает и быстро расширяется, заставляя поршень опускаться в крайнее нижнее положение.На завершающей стадии этого хода выхлопной канал обнажается, и выхлопные газы покидают рабочую зону. Цикл повторяется. '

Двухтактные двигатели не должны иметь масляный поддон, смазка шатунной системы должна заполняться топливной смесью. Соответственно, в топливо добавляется определенное количество моторного масла. Также мы выделяем двухтактные двигатели, в которых масло не заливается в топливо, а прижимается из отдельного бака непосредственно к подшипникам и на поверхности цилиндра. Такая система сложна для двигателя, а главное ее преимущество - легкость и простота (отсутствие ГРМ, системы смазки и т. Д.) Двухтактные двигатели, обладая своими достоинствами, не нашли широкого применения. В основном они используются для управления легкими мотоциклами и мопедами. В последнее время даже в этих приложениях их заменили четырехтактные двигатели. Мы также производили легковые автомобили (Syrena, Trabant и Wartburg) и грузовики IFA в Польше и ГДР. Их производство было прекращено. Главный недостаток двухтактных двигателей - их шумная работа и большой выброс выхлопных газов. Основная причина этого - состав моторного масла в топливной смеси, которая сжигается вместе с топливом.

.

Двухтактный двигатель - Изобретения и открытия

Первый одноцилиндровый двухтактный двигатель внутреннего сгорания был создан еще в 1860 году. Его автором был французский изобретатель бельгийского происхождения Этьен Ленуар.

В 1878 году шотландский инженер Дугальд Клерк сконструировал модель газового двигателя, в которой все рабочие фазы (впуск смеси, сжатие, зажигание и расширение, а также выпуск выхлопных газов) происходили за один оборот коленчатого вала, то есть за два хода поршня.

Его конструкция стала прототипом для более поздних двухтактных двигателей. Первый бензиновый поршневой двигатель внутреннего сгорания был разработан в 1878-79 годах немецким инженером и пионером автомобилестроения Карлом Бенцем.

Он представил модель двухтактного двигателя, работающего на горючей смеси жидких углеводов, называемой бензином. В его двигателе устройство, называемое карбюратором, отвечало за подачу топлива в воздушный поток в цилиндрах и дозирование расхода образовавшейся бензин-воздушной смеси (воздушно-топливной смеси).Технологический успех нового двигателя был настолько велик, что в 1883 году Бенц основал собственную автомобильную компанию Benz & Co, из которой через два года был произведен первый трехколесный автомобиль.

В современных двухтактных двигателях рабочий процесс происходит (как в 1878 году) за 2 последовательных хода поршня, что соответствует 1 обороту коленчатого вала.
Посмотрите, как это работает.

Двухтактный двигатель по сравнению с четырехтактным имеет менее сложную конструкцию, проще в обслуживании и ремонте, дешевле, но его недостатком, как правило, является более высокий расход топлива и загрязнение воздуха.
Двухтактные двигатели позволяют получить более высокую мощность и крутящий момент по сравнению с четырехтактными двигателями того же рабочего объема; Последние поколения двухтактных двигателей также характеризуются низкой токсичностью выхлопных газов.

В современных двухтактных поршневых двигателях используются, среди прочего, односторонние клапаны с прорезями во впускных каналах и поворотные клапаны на выпуске, автоматическое управление смазкой и подачей, а также каталитические дожигатели. Разрабатывается новое поколение двухтактных двигателей с прямым впрыском топлива (с подачей воздуха) в цилиндр, что позволяет устранить большинство недостатков обычных двухтактных двигателей.

Рабочий цикл двухтактного двигателя состоит из двух тактов. Первый - это ход сжатия. Когда поршень движется вверх по цилиндру, он сжимает топливную смесь. При этом в свободное пространство под поршнем капает еще одна порция смеси. Сжатая смесь в цилиндре воспламеняется от искры свечи зажигания. Поршень начинает двигаться вниз, открывая выхлопное отверстие, и выхлопной газ выходит наружу. Далее в нижнем положении поршня ситуация повторяется. Благодаря тому, что поршень соединен через шатун, он вращает коленчатый вал.На шатуне находится маховик, который накапливает энергию и обеспечивает плавное движение вала.

Двигатели этого типа сегодня используются в мотоциклах, бензиновых газонокосилках и пилах. До недавнего времени они также приводили в действие небольшие автомобили, такие как Trabant или Mermaid

.Движок

- Викисловарь, бесплатный многоязычный словарь

произношение:
? / I , IPA: [ˈɕilʲɲik], AS: [ś and lʹńik], фонетические явления: мягкость.
значений:

существительное, мужской род

(1.1) тех. устройство для преобразования других видов энергии в механическую энергию; видеть также мотор в Википедии
вариация:
(1.1)
примеры:
(1.1) У моей машины сломался двигатель.
синтаксис:
словосочетаний:
(1.1) термический / электрический / сгорание / поршневой /… • запуск / остановка двигателя • двигатель работает / работает / вращается • эффективный / неисправный двигатель
синонимов:
(1.1) мотор
антонимы:
гиперонимов:
(1.1) диск
гипонимы:
(1.1) турбина
голоним:
meronyms:
связанных слов:
п. сила ż, актуатор мрз, силач мос, силач ż
уменьшительное двигатель m
прил. моторизованный, сильный
нар. сильный
фразеологические соединения:
этимология:
(1.1) пол. force + -k (генерирующая сила)
примечания:
переводов:
источники:
.

Смотрите также