Как установить на ниву шевроле турбину


Турбонаддув на Chevy Niva. Пилюля от дохлости — журнал За рулем

Турбонаддув на Chevy Niva. Пилюля от дохлости

Постепенно прибавляли объем — 1.5–1.6, наконец — 1.7 литра, карбюратор заменили впрыском (самое решительное свершение за всю историю мотора). Именно таким двигателем комплектовали последние «классические» «Нивы» 21214. Почти без изменений он перекочевал на новую модель — 2123, Chevy Niva.

Старый двигатель устраивал не всех нивоводов, тем более — владельцев Chevy. Невысокая мощность и маленький крутящий момент порой просто раздражают водителя. Кроме того, верховой двигатель езды по-внедорожному, «на низах», не переносит — глохнет. И пока АВТОВАЗ внедряет 2-литровый двигатель Opel, призванный спасти положение, некоторые прибегают к тюнингу.

Рынок предлагает несколько вариантов форсирования «Нивских» двигателей — от классической замены валов, поршней, форсунок, перепрошивки, доработки впуска и выпуска до установки нагнетателей. Не так давно столичная компания BiPower разработала тюнинг-программу по адаптации к мотору 2123 импортного механического нагнетателя. И все бы хорошо, если бы не цена — чуть ли не в половину стоимости автомобиля. Другие предложения такого типа тоже недешевы.

В то же время другая московская фирма TDV Motorsport разработала турбокит на основе импортных комплектующих, установила на «клиентский» автомобиль и предлагает переоборудование по той же схеме других Chevy Niva. Стоимость базового комплекта вместе с работой объявлена на уровне 2500 долларов. Впрочем, она может и увеличиться, если клиент пожелает получить более 135 л.с. и 213 Н.м. (данные с моторного стенда Lucasturbo). Но стоит ли?

Даже в этом варианте автомобиль едет так, что порой приходится убеждать себя: это именно Niva, а не… Subaru Impreza, например. Схожи и звуки (посвист и всхлипы наддува), и вибрации. Но чтобы вспомнить, кто есть кто, достаточно отвести взгляд от дороги… Правда, без привычки к машине иллюзия все равно потом возвращается. Благодаря наддуву и полному приводу на скользком покрытии автомобиль разгоняется так лихо, что «курят» даже значительно более мощные моноприводники.

Автомобиль впечатляет и на фоне «заряженных» турбонаддувных «японцев». Слишком велика разница между базовым и тюнинговым вариантами. Дистанция огромного размера.

Если не заигрываться, автомобилем управлять довольно просто — пусть конструкторы Chevy Niva и «забыли» про двигатель, перед запуском 2123 они модернизировали и рулевое, и трансмиссию, и тормозную систему, и подвеску. Правда, последние два пункта из-за тюнинга явно нуждаются в ревизии — и здесь нет конструкторского просчета. Просто тольяттинские инженеры не рассчитывали на почти двойное увеличение мощности и крутящего момента. Интересно, что несмотря на серию беспощадных тестов у автомобиля цела родная трансмиссия — она-то явно сделана с запасом надежности. Мастера уверяли, что автомобиль спокойно выдерживает даже такое варварское упражнение, как «заплыв» по снежной целине высотой под кромку капота. Со скоростью отнюдь не черепашьей!

Тюнинг тормозов и подвески запланирован на будущее, а легкосплавные диски уже красуются. Владелец откровенно презирает пластиковые обвесы для внедорожников. Одно с другим, по его мнению, не сочетается. А вот к состоянию машины он относится трепетно, знает наперечет все сколы на кузове и досадует из-за каждой царапины.

Как это принято говорить, все отличия от «стандарта» — под капотом. На самом виду, справа от двигателя, под термозащитным экраном, стоит «улитка» Garrett, от которой тянутся рукава из нержавейки. На резиновом «аппендиксе» — клапан вестгейта… Где-то внизу прячется интеркуллер. Перед тест-поездкой Владимир Чемров, главный конструктор TDV Motorsport, установил фильтр пониженного сопротивления в штатную коробку, сняв верхнюю крышку. Пусть не очень красиво, но практично. Стандартные фильтры с этим мотором быстро выходят из строя.

Правда, не определено, сколько выдержит эта конструкция. Niva прошла немного, и судить о ресурсе категорически нельзя. Однако то, как испытывали автомобиль тюнеры, позволяет предположить, что в спокойном режиме, без постоянного «педаль в полу», он отработает несколько лет.

Олег Токарь, владелец турбонаддувной Chevy Niva, главный инженер:

— Оффроуд — одно из моих увлечений. Были самые разные машины — и наши, и импортные. Естественно, и «Нивы». Когда собрался купить новую, остановился на Chevy Niva. Купил машину, обкатывал — и вроде все устраивало. Потом привык, стало не хватать двигателя. Стандартный слаб даже для города, не говоря уже о бездорожье. Стал рассматривать варианты форсировки. Самым интересным показался наддув. В сети посмотрел предложения, которые есть на эту тему, обратился в несколько фирм. Они «порадовали» ценами и при этом не брали на себя обязательств. В итоге вышел на ребят из TDV. Приехал — они посмотрели машину и начали работу. Результат перед вами.Я очень доволен. Хотя готовили машину долго, видел, как они стараются. Теперь ее просто не узнать — наддув изменил машину, оживил ее. Едет так, что иногда становится страшновато. Мне еще придется привыкать к такой динамике, а у ребят из TDV уже есть планы поставить турбину побольше, еще форсировать. Может быть, когда-нибудь и решусь, но точно не скоро. Кстати, они собрались покупать новую Chevy Niva для себя! Я считаю, это показатель.

Как работают ветряные турбины?

Вы здесь

Ветровые турбины работают по простому принципу: вместо того, чтобы использовать электричество для производства ветра, как вентилятор, ветровые турбины используют ветер для производства электроэнергии.Ветер вращает похожие на пропеллер лопасти турбины вокруг ротора, который вращает генератор, который вырабатывает электричество.

Ветер - это форма солнечной энергии, вызванная комбинацией трех одновременных событий:

  1. Солнце неравномерно нагревает атмосферу
  2. Неровности земной поверхности
  3. Вращение Земли.

Характер и скорость ветровых потоков сильно различаются по территории Соединенных Штатов и изменяются в зависимости от водоемов, растительности и различий в рельефе местности. Люди используют этот поток ветра или энергию движения для многих целей: для плавания, запуска воздушного змея и даже для выработки электроэнергии.

Термины «энергия ветра» и «энергия ветра» описывают процесс, с помощью которого ветер используется для выработки механической энергии или электричества. Эту механическую мощность можно использовать для конкретных задач (например, измельчения зерна или перекачивания воды), или генератор может преобразовывать эту механическую мощность в электричество.

Ветряная турбина превращает энергию ветра в электричество, используя аэродинамическую силу от лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер проходит через лезвие, давление воздуха с одной стороны лезвия уменьшается. Разница в давлении воздуха на двух сторонах лопасти создает подъемную силу и сопротивление. Сила подъема сильнее сопротивления, и это заставляет ротор вращаться. Ротор подключается к генератору либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют использовать генератор меньшего размера.Этот перевод аэродинамической силы во вращение генератора создает электричество.

Типы ветряных турбин

Большинство ветряных турбин делятся на два основных типа:

Деннис Шредер | NREL 25897

Ветровые турбины с горизонтальной осью - это то, что многие люди представляют, когда думают о ветряных турбинах.

Чаще всего они имеют три лопасти и работают «против ветра», при этом турбина поворачивается наверху башни, так что лопасти обращены против ветра.

Ветровые турбины с вертикальной осью бывают нескольких разновидностей, включая модель Дарье в стиле взбивания яиц, названную в честь ее французского изобретателя.

Эти турбины являются всенаправленными, что означает, что для работы их не нужно настраивать так, чтобы они были направлены против ветра.

Ветряные турбины можно строить на суше или на море в больших водоемах, таких как океаны и озера. Министерство энергетики США в настоящее время финансирует проекты по развитию морских ветроэнергетических установок в США.С. вод.

Области применения ветряных турбин

Современные ветряные турбины можно разделить на категории по месту их установки и способу подключения к сети:

Наземные ветряные турбины имеют размеры от 100 киловатт до нескольких мегаватт.

Более крупные ветряные турбины более рентабельны и объединены в ветряные электростанции, которые обеспечивают большую мощность в электросети.

Деннис Шредер | NREL 40484

Морские ветряные турбины обычно массивные и выше Статуи Свободы.

У них нет таких же проблем с транспортировкой, как у наземных ветряных установок, поскольку крупные компоненты можно перевозить на кораблях, а не по дорогам.

Эти турбины способны улавливать мощные океанские ветры и генерировать огромное количество энергии.

Когда ветряные турбины любого размера устанавливаются на стороне потребителя электросчетчика или устанавливаются в месте или рядом с местом, где будет использоваться производимая ими энергия, их называют «распределенным ветром».

Многие турбины, используемые в распределенных приложениях, представляют собой небольшие ветряные турбины. Одиночные небольшие ветряные турбины мощностью менее 100 киловатт обычно используются в жилых, сельскохозяйственных и небольших коммерческих и промышленных целях.

Небольшие турбины могут использоваться в гибридных энергетических системах с другими распределенными энергоресурсами, такими как микросети с питанием от дизельных генераторов, батарей и фотоэлектрических элементов.

Эти системы называются гибридными ветровыми системами и обычно используются в удаленных местах вне сети (где подключение к коммунальной сети недоступно) и становятся все более распространенными в приложениях, подключенных к сети, для обеспечения отказоустойчивости.

Узнайте больше о распределенном ветре из Distributed Wind Animation или прочтите о том, что делает Управление технологий ветровой энергии для поддержки развертывания распределенных ветровых систем для домов, предприятий, ферм и местных ветровых проектов.

В этом видео освещаются основные принципы работы ветряных турбин и показано, как работают различные компоненты для улавливания и преобразования энергии ветра в электричество.См. Текстовую версию. История ветроэнергетики США

На протяжении истории использование энергии ветра увеличивалось и уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных фермах и т. Д ...

Выучить больше

Узнайте больше о ветровой энергии, посетив веб-страницу офиса Wind Energy Technologies Office или просмотрев информацию о финансируемых офисом мероприятиях.

Подпишитесь на информационный бюллетень WETO

Будьте в курсе последних новостей, событий и обновлений ветроэнергетики.

.

Как запускают реактивные двигатели на самолетах?

Газотурбинные двигатели бывают разных форм и размеров. Один из типов, обсуждаемых в статье «Как работают газотурбинные двигатели», включает в себя обычный «реактивный» двигатель самолета. Горячие газы, производимые горящим топливом, приводят в движение лопатки точно так же, как ветер вращает ветряную мельницу. Лопатки соединяются с валом, который также вращает компрессор турбины. Другой тип газотурбинного двигателя, популярный в танках и вертолетах, имеет один набор лопаток для привода компрессора, а также отдельный набор лопаток, приводящих в движение выходной вал.В обоих этих типах двигателей вам необходимо заставить вращаться главный вал, чтобы запустить двигатель.

В этом процессе пуска обычно используется электродвигатель для вращения вала главной турбины. Двигатель прикреплен болтами к внешней стороне двигателя и использует вал и шестерни для соединения с главным валом. Электродвигатель вращает главный вал до тех пор, пока через компрессор и камеру сгорания не пройдет достаточно воздуха, чтобы зажечь двигатель. Топливо начинает течь, и воспламенитель, похожий на свечу зажигания, воспламеняет топливо.Затем поток топлива увеличивается, чтобы раскрутить двигатель до его рабочих оборотов. Если вы когда-нибудь были в аэропорту и наблюдали запуск большого реактивного двигателя, вы знаете, что лопасти начинают медленно вращаться. Этим занимается электрический стартер. Затем вы (иногда) слышите хлопок и видите, как из задней части двигателя выходит дым. Затем двигатель раскручивается и начинает развивать тягу.

Объявление

На небольших газотурбинных двигателях (особенно в моделях домашнего производства) другой способ запустить двигатель - просто продуть воздухозаборник с помощью фена или воздуходувки.Этот метод имеет тот же эффект, что и воздух, движущийся через камеру сгорания, но не требует сложности или веса присоединенного стартера.

Помимо стартового вала, большинство больших реактивных двигателей включают еще один выходной вал для привода таких устройств, как электрические генераторы, компрессоры кондиционирования воздуха и т. Д., Необходимых для управления самолетом и поддержания его комфорта. Этот вал может соединяться с главным валом турбины в той же точке, что и стартер, или в другом месте.Некоторые реактивные самолеты имеют отдельную турбину (иногда в хвостовом конусе самолета), которая только генерирует вспомогательную энергию. Более эффективно использовать эту меньшую турбину, когда самолет находится на взлетной полосе.

Вот несколько полезных ссылок:

.

Как работают 4 типа турбинных двигателей

Прямая трансляция из полетной палубы

Газотурбинные двигатели прошли долгий путь с 1903 года. Это был первый год, когда газовая турбина вырабатывала достаточно мощности, чтобы поддерживать себя в рабочем состоянии. Дизайн был разработан норвежским изобретателем Эгидусом Эллингом, и он выдал 11 лошадиных сил, что было огромным достижением в то время.

В наши дни газотурбинные двигатели бывают всех форм и размеров, и большинство из них вырабатывают , много , более 11 лошадиных сил.Вот 4 основных типа турбинных двигателей, а также плюсы и минусы каждого.

1) Турбореактивный двигатель

Heinkel He 178, первый в мире турбореактивный самолет

Турбореактивные двигатели были первым изобретенным типом газотурбинных двигателей. И хотя они выглядят совершенно иначе, чем поршневой двигатель в вашем автомобиле или самолете, они работают по той же теории: впуск , компрессия, мощность, выпуск .

Как работает турбореактивный двигатель?

Турбореактивные двигатели работают за счет пропускания воздуха через 5 основных секций двигателя:

Шаг 1: Воздухозаборник
Воздухозаборник представляет собой трубку перед двигателем.Забор воздуха может показаться простым, но это невероятно важно. Задача воздухозаборника - плавно направлять воздух в лопатки компрессора. На низких скоростях необходимо минимизировать потери воздушного потока в двигателе, а на сверхзвуковых скоростях он должен замедлять воздушный поток ниже 1 Маха (воздух, поступающий в турбореактивный двигатель, должен быть дозвуковым, независимо от того, насколько быстро летит самолет. ).

Шаг 2: Компрессор
Компрессор приводится в движение турбиной в задней части двигателя, и его работа заключается в сжатии поступающего воздуха, что значительно увеличивает давление воздуха.Компрессор представляет собой серию «вентиляторов», каждый с меньшими и меньшими лопатками. Когда воздух проходит через каждую ступень компрессора, он становится более сжатым.
Шаг 3: Камера сгорания
Далее идет камера сгорания, где действительно начинается волшебство. Воздух высокого давления смешивается с топливом, и смесь воспламеняется. По мере сгорания топливно-воздушной смеси она движется через двигатель к турбине. Турбореактивные двигатели работают на очень бедной смеси: примерно 50 частей воздуха на каждую 1 часть топлива (большинство поршневых двигателей работают в диапазоне от 6: 1 до 18: 1).Одна из основных причин, по которой турбины работают на обедненной смеси, заключается в том, что для охлаждения турбореактивного двигателя требуется дополнительный поток воздуха.
Шаг 4: Турбина
Турбина - это еще одна серия «вентиляторов», которые работают как ветряная мельница, поглощая энергию проходящего через нее воздуха с высокой скоростью. Лопатки турбины соединены с валом и вращают его, который также соединен с лопатками компрессора в передней части двигателя. «Жизненный цикл» турбореактивного двигателя почти завершен.

Шаг 5: Выхлоп (он же «Я ухожу отсюда!»)
Сгоревшая на высокой скорости топливно-воздушная смесь выходит из двигателя через выхлопное сопло.Когда высокоскоростной воздух выходит из задней части двигателя, он создает тягу и толкает самолет (или то, к чему он прикреплен) вперед.

Турбореактивный на вынос:

  • Плюсов:
    • Сравнительно простой дизайн
    • Возможность очень высоких скоростей
    • Занимает мало места
  • Минусы:
    • Большой расход топлива
    • Громко
    • Низкая производительность на малых скоростях

2) Турбовинтовой двигатель

Прямая трансляция из полетной палубы

King Air с турбовинтовыми двигателями

Следующие три типа турбинных двигателей представляют собой все разновидности турбореактивных двигателей, и мы начнем с турбовинтового.Турбовинтовой - это турбореактивный двигатель, соединенный с воздушным винтом через систему зубчатых передач.

Как работает турбовинтовой двигатель?

Шаг 1 : Турбореактивный двигатель вращает вал, который соединен с коробкой передач.

Шаг 2 : Коробка передач замедляет вращение, и самая медленно движущаяся шестерня подключается к гребному винту.

Шаг 3 : Винт вращается в воздухе, создавая тягу, как и ваша Cessna 172

Турбовинтовой вынос:

  • Плюсов:
    • Очень экономичный
    • Наиболее эффективен на средней скорости 250-400 узлов
    • Наиболее эффективен на средних высотах от 18 000 до 30 000 футов
  • Минусы:
    • Ограниченная скорость полета вперед
    • Зубчатые передачи тяжелые и могут выйти из строя

3) Турбореактивный двухконтурный двигатель

Прямая трансляция из полетной палубы

Некоторые широкофюзеляжные турбовентиляторные двигатели могут развивать тягу более 100 000 фунтов

Турбореактивные двухконтурные двигатели сочетают в себе лучшее из двух миров - турбореактивных и турбовинтовых.И вы, вероятно, увидите эти двигатели, когда отправитесь в аэропорт на следующий рейс авиакомпании.

Как работает турбовентиляторный двигатель?

Турбореактивные двухконтурные двухконтурные двигатели присоединяются к передней части турбореактивного двигателя. Вентилятор создает дополнительную тягу, помогает охлаждать двигатель и снижает уровень шума двигателя.

Шаг 1 : Входящий воздух делится на два отдельных потока. Один поток обтекает двигатель (перепускной воздух), а другой проходит через сердечник двигателя.

Шаг 2 : Обводной воздух проходит вокруг двигателя и ускоряется канальным вентилятором, создавая дополнительную тягу.

Шаг 3 : Воздух проходит через турбореактивный двигатель, продолжая создавать тягу.

ТРДД на вынос:

  • Плюсов:
    • Экономия топлива
    • Тихо, чем турбореактивные
    • Они потрясающе выглядят
  • Минусы:
    • Тяжелее ТРД
    • Большая площадь лобовой части, чем у турбореактивных двигателей
    • Неэффективен на очень большой высоте

ТРДД Pratt & Whitney F100 с форсажной камерой на F-16

4) Турбовальный двигатель

Вертолет Bell 206 с турбовальным двигателем

Турбовальные двигатели в основном используются на вертолетах.Самая большая разница между турбовальными двигателями и турбореактивными двигателями заключается в том, что турбовальные двигатели используют большую часть своей мощности для вращения турбины, а не для создания тяги, выходящей из задней части двигателя.

Как работает турбовальный вал?

Турбовалы - это, по сути, турбореактивный двигатель с большим валом, соединенным с задней частью. А поскольку большинство этих двигателей используется на вертолетах, этот вал соединен с трансмиссией лопастей несущего винта.

Шаг 1 : Двигатель по большей части работает как турбореактивный.

Шаг 2 : Приводной вал, прикрепленный к турбине, приводит в действие трансмиссию.

Шаг 3 : Трансмиссия передает вращение от вала на лопасть ротора.

Шаг 4 : Вертолет, в основном неизвестными и волшебными способами, может летать по небу.

Вынос турбовального вала:

  • Плюсов:
    • Намного более высокое отношение мощности к массе, чем у поршневых двигателей
    • Обычно меньше поршневых двигателей
  • Минусы:
    • Громко
    • Зубчатые передачи, соединенные с валом, могут быть сложными и выходить из строя

4 типа двигателей, основанных на одной базовой концепции

Газотурбинные двигатели прошли долгий путь за последние 100 лет.И хотя турбореактивные двигатели, турбовинтовые двигатели, турбовентиляторные двигатели и турбовальные двигатели имеют свои различия, их способ выработки мощности, по сути, одинаков: впуск, сжатие, мощность и выхлоп.


Станьте лучшим пилотом.
Подпишитесь, чтобы получать последние видео, статьи и викторины, которые сделают вас более умным и безопасным пилотом.


.

типов турбин | HowStuffWorks

Есть много разных типов турбин:

  • Вы, наверное, слышали о паровой турбине . Большинство электростанций используют уголь, природный газ, нефть или ядерный реактор для производства пара. Пар проходит через огромную и очень тщательно спроектированную многоступенчатую турбину, чтобы вращать выходной вал, приводящий в движение генератор установки.
  • Плотины гидроэлектростанций используют водяные турбины таким же образом для выработки электроэнергии.Турбины, используемые на гидроэлектростанции, полностью отличаются от паровых, потому что вода намного плотнее (и движется медленнее), чем пар, но принцип тот же.
  • Ветровые турбины , также известные как ветряные мельницы, используют ветер в качестве движущей силы. Ветряная турбина не похожа на паровую турбину или водяную турбину, потому что ветер медленный и очень легкий, но, опять же, принцип тот же.

Газовая турбина является продолжением той же концепции.В газовой турбине сжатый газ раскручивает турбину. Во всех современных газотурбинных двигателях двигатель вырабатывает собственный сжатый газ, сжигая что-то вроде пропана, природного газа, керосина или реактивного топлива. Тепло, возникающее при сгорании топлива, расширяет воздух, и высокоскоростной поток этого горячего воздуха раскручивает турбину.

.

Смотрите также