Что такое инжектор


Устройство инжектора и принцип работы инжектора на автомобилях

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Содержание статьи:

  • Виды инжекторных систем;
    • Центральная;
    • Распределенная;
    • Непосредственная;
  • Виды электронных форсунок;
  • Принцип работы инжектора;
  • Преимущества инжектора и его недостатки.

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

  • Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.
  • Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану.
  • Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

К механической части инжектора относится:

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
  • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
  • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
  • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
  • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
  • Датчик детонации, расположен на блоке цилиндров;
  • Датчик скорости, установлен на коробке передач;
  • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Преимущества инжектора и его недостатки

Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

+ Преимущества — Недостатки
реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива; чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки; прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа; замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто; регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ; использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз. регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

Что такое инжектор, зачем он нужен и как устроен?

Первые инжекторы появились в автомобильной индустрии в далеком 1951 году, благодаря компании Bosch, а затем и Mercedes. Тем не менее, широкое распространение инжекторы получили несколько десятков лет спустя, вытеснив карбюраторы. Многие автомобилисты (особенно начинающие) задавались вопросом, что такое инжектор и зачем он нужен. В данной статье подробно рассмотрен принцип работы устройства и назначение.

[contents]

Содержание

  1. Инжектор: что это, как работает, для чего нужен?
  2. Преимущества и недостатки инжектора
  3. Внутреннее устройство инжектора и принцип его работы
  4. Режимы работы
  5. Частые поломки и ремонт инжектора

Инжектор: что это, как работает, для чего нужен?

Инжектор (форсунок) – часть системы подачи топлива, если говорить грубо. Основной принцип работы заключается в принудительной подаче топлива (жидкого или газообразного) в цилиндр.

 

Существует два вида в зависимости от места установки и основного принципа работы:

  • Моновпрыск (центральный впрыск) – состоит из одной форсунки, которая подает топливо во все цилиндры.
  • Распределённый впрыск – состоит из множества форсунок, каждая из которых подает топливо только в один из цилиндров. Распределенный впрыск может быть:
  1. Одновременным, при этом происходит синхронная подача топлива во все цилиндры.
  2. Прямым, то есть непосредственно в камеру. Для двигателей с таким типом подачи особо важным является качество применяемого топлива.
  3. Попарно-параллельным, при котором одна из форсунок открывается перед началом подачи топлива, а вторая после.
  4. Фазированным – каждая форсунка открывается непосредственно перед началом впрыска топлива.

Множество автолюбителей задумывается, особенно при выборе автомобиля, в чем заключаются преимущества инжектора:

Первое – подача топлива в камеру сгорания, где происходит смешивание с воздухом, происходит с помощью форсунки. Это позволяет дозировать порцию бензина на одно впрыскивание. За счет этого у транспортного средства значительно увеличивается мощность (на 7–10%), а главное снижается расход топлива.

Система впрыска очень чувствительна к изменениям нагрузки, и поэтому быстро реагирует на ее изменения количеством подачи бензина. Немаловажным преимуществом является то, что в холодное время года транспортное средство практически не нужно «прогревать». Также инжектор незначительно повышает экологичность выхлопных газов.

Теперь перейдем к недостаткам. Во-первых, автоматизированость инжекторной системы не всегда является преимуществом. При внезапном выходе из строя, привести систему в работу самостоятельно без помощи специалиста невозможно.

Кроме того, инжектор очень требователен к выбору топлива, особенно если вы хотите, чтобы транспортное средство прослужило как можно дольше. При поломках большинство деталей являются неремонтопригодными и требуют полной замены.

В случае ДТП риск воспламенения более высок, из-за подачи топлива под определённым давлением (в случае повреждения контроллера впрыска).

Внутреннее устройство инжектора и принцип его работы

Чтобы разобраться в принципе работы инжекторного двигателя, сперва нужно понять его строение.

  1. ЭБУ (электронный блок питания) – управляет работой всей системы инжекторного двигателя на основании полученных данных (из внешней среды и непосредственно от параметров работы двигателя). Содержит систему диагностики неисправности инжектора, передавая сигнал датчику «Check engine» на панели приборов.
  2. Регулятор давления. В норме давление в форсунках должно быть постоянным, этот регулятор отвечает за постоянство этой величины.
  3. Форсунки – непосредственно подают топливо в цилиндры (электромагнитные, электрогидравлические и пьезоэлектрические).
  4. Бензонасос – под давлением подает топливо в форсунки, что снижает риск образования воздушных пробок.
  5. Датчики – необходимы для слаженной работы всей системы. В инжекторе установлено несколько видов:
  • Датчик детонации – расположен в самих цилиндрах, при детонации по нему проходят вибрации. В виде свободного тока передает информацию на ЭБУ.
  • ДПДЗ – реагирует увеличением датчика или его падением, при смене поворотного угла заслонки дросселя.
  • Датчик фаз сообщается с блоком управления и с цилиндром. Благодаря этому, блок управления подает необходимое напряжение в цилиндр при зажигании, и совершает управление тактами.
  • Датчик массового расхода воздуха состоит из двух платиновых нитей (первая свободно обдувается потоками воздуха, а вторая герметично изолирована). Блок управления подсчитывает температуру и массу воздуха, за счет разницы температуры и сопротивления на двух нитях.
  • ДПКВ (положения коленчатого вала), или датчик Холла, позволяет определять положение коленчатого вала. Основной принцип работы в том, что зубчатое колесо, расположенное на валу двигателя, вращается вокруг магнита. При искажении магнитного поля датчик создает импульсы внутри катушки и передает их в блок управления. В соответствии с полученными импульсами ЭБУ определяет положение коленвала.

 

Все форсунки соединены в единую систему, которая называется топливной рампой. С помощью бензонасоса за счет излишнего давления внутри системы топливо подается в систему. После чего открывается клапан, и топливо из форсунки поступает в цилиндр (чем дольше открыт клапан, тем больше топлива подается и, соответственно, обороты будут выше). Количество поступающего топлива непосредственно зависит от количества воздуха, поступающего в цилиндр.

Благодаря ресурсам интернет-сети можно наглядно увидеть принцип работы инжекторного двигателя:

Режимы работы

Инжекторный двигатель способен работать в 2 режимах.

  1. Холодного пуска. Во время запуска топливо оседает на стенках впускных труб и значительно меньше испаряется. Вследствие этого, топливная смесь незначительно утрачивает свои способности. Для устранения негативного эффекта необходима дополнительная подача топлива при запуске, до достижения топливом необходимой температуры, благодаря чему достигаются нужные обороты холостого хода.
  2. Частичной или полной нагрузки. Максимальной мощности двигатель достигает в момент полного открытия дроссельной заслонки. При повышении оборотов (при быстром открытии заслонки) способность топлива к испарению снижается. Во избежание этого и достижения нужных оборотов происходит дополнительная подача топлива.

Частые поломки и ремонт инжектора

Первой из возможных поломок могут быть проблемы с подачей топлива в инжектор. Первым делом нужно проверить датчик уровня бензина, если датчик исправен – значит проблема в бензонасосе. При засорении входного отверстия подачи топлива его необходимо просто прочистить. В случае если чистка не увенчалась успехом – поломан бензонасос, и его необходимо заменить.

Для замены лучше обратиться на СТО, так как при неправильной установке бензонасоса вместе с топливом он начнет всасывать воздух.

Увеличение расхода топлива чаще всего происходит при засорении форсунок. При этом они не смогут подавать необходимый объем топлива, и система начнет это компенсировать увеличением частоты или объема впрыска топлива. Кроме того, длительность разгона транспортного средства увеличится, а мощность значительно снизится.

Временное исчезновение холостого хода в основном происходит при нарушении герметичности внутри системы, вследствие чего в нее поступает воздух.

Двигатель начинает троить при остановке работы одного из цилиндров. С данной проблемой можно столкнуться при полном засорении форсунки, когда она не способна подавать топливо в цилиндр. Чаще всего это происходит при использовании некачественного топлива.

При поломке датчика фаз, форсунки начинают работать асинхронно, при этом топливо в цилиндры поступает абсолютно бесконтрольно. Будут наблюдаться перебои в работе двигателя и значительная утрата мощности.

Поломка датчика положения дроссельной заслонки проявляется в изменении оборотов при фиксированной педали газа, или в снижении оборотов при выжатой педали. При этом в двигатель поступает чрезмерно большое количество топлива.

Для того, чтобы избежать значительных поломок следует выбирать качественное топливо (во избежание чрезмерного загрязнения) и следить за исправностью работы инжектора.

Индикатор «Check engine» не всегда будет загораться, свидетельствуя о поломках, или вовсе может давать ложные показания. Поэтому нельзя всегда полагаться на датчик, а если вы заметили «странное поведение» транспортного средства – лучше сразу обратиться на СТО.

 

 

Как вам статья?

Что такое топливная форсунка?

Компания Bosch создала форсунку для дизельного топлива в 1920 году в ответ на рост спроса и цен на топливо. С момента введения впрыска топлива в транспортных средствах скорость и ускорение многих преувеличены, в результате чего усовершенствования в технологии сделали двигатели более экономичными, эффективными и создали более высокую мощность. Эта технология, хотя и обновленная, сегодня используется как в дизельных, так и в бензиновых двигателях.

Что такое топливная форсунка?

Топливная форсунка — это устройство для распыления и впрыска топлива в двигатель внутреннего сгорания. Форсунка распыляет топливо и нагнетает его непосредственно в камеру сгорания в определенный момент цикла сгорания. Более новые форсунки также могут измерять количество топлива в соответствии с указаниями и контролем электронного модуля управления (ECM). Бензиновые топливные форсунки теперь выступают в качестве альтернативы карбюратору, в котором воздушно-топливная смесь всасывается за счет разрежения, создаваемого ходом поршня вниз.

Как правило, форсунки для дизельного топлива устанавливаются в головке двигателя с наконечником внутри камеры сгорания, размер отверстий, количество отверстий и углы распыления могут варьироваться от двигателя к двигателю.

Бензиновые форсунки могут быть установлены во впускном коллекторе (многоточечный впрыск, корпус дроссельной заслонки или, в последнее время, непосредственно в камеру сгорания (GDI).

Зачем нужны топливные форсунки?

Топливные форсунки являются необходимыми компонентами двигателя, потому что :

· Принцип работы двигателей внутреннего сгорания гласит, что чем лучше качество топливно-воздушной смеси, тем лучше сгорание, что обеспечивает более высокий КПД двигателя и более низкий уровень выбросов.0003

· Неэффективное смешивание топлива и воздуха, обеспечиваемое карбюраторами, оставляет различные несгоревшие частицы внутри камеры сгорания двигателя внутреннего сгорания. Это приводит к неправильному распространению пламени сгорания из-за неисправности, известной как «детонация», а также к более высоким выбросам.

· Несгоревшее топливо в виде углерода или несгоревших газов и частиц внутри камеры сгорания отрицательно влияет на эффективность (пробег) и выбросы автомобиля. Чтобы избежать этого, модернизированная технология впрыска топлива стала необходимой.

Типы топливных форсунок

Развитие технологий впрыска топлива привело к появлению различных схем впрыска топлива, таких как впрыск топлива через дроссельную заслонку, многоточечный впрыск топлива, последовательный впрыск топлива и непосредственный впрыск, которые варьируются в зависимости от применения.

Основы впрыска топлива

Существует 2 типа топливных форсунок:

1. Форсунки для дизельного топлива

Современные форсунки для дизельного топлива используются для непосредственного распыления и впрыскивания или распыления дизельного топлива (более тяжелого топлива, чем бензин). в камеру сгорания дизельного двигателя для воспламенения от сжатия (без свечей зажигания).

Для дизельных топливных форсунок требуется гораздо более высокое давление впрыска (до 30 000 фунтов на квадратный дюйм), чем для бензиновых форсунок, поскольку дизельное топливо тяжелее бензина, и для распыления топлива требуется гораздо более высокое давление.

2. Бензиновые топливные форсунки

Бензиновые топливные форсунки используются для впрыска или распыления бензина непосредственно (GDI) или через впускной коллектор (многопортовый) или корпус дроссельной заслонки в камеру сгорания для воспламенения от искры.

Конструкция бензиновых форсунок различается в зависимости от типа… в более новых форсунках GDI используется сопло с несколькими отверстиями, а в многопортовом корпусе дроссельной заслонки используется сопло с бессмысленным стилем. Давление впрыска бензина намного ниже, чем у дизеля… 3000 фунтов на квадратный дюйм для GDI и 35 фунтов на квадратный дюйм для типа Pinter.

Основы дозирования топлива — форсунки

Существует 2 типа дозирования топлива (контроль продолжительности впрыска, давления и времени подачи топлива) топливных форсунок. Современные двигатели имеют до 5 впрысков в каждом цикле сгорания… чтобы извлечь выгоду из эффективности и сокращения выбросов.

1. Топливные форсунки с механическим управлением

Механические топливные форсунки, в которых управление скоростью, количеством, синхронизацией и давлением топлива осуществляется механически с использованием пружин и плунжеров. Эти детали получают сигнал от кулачка или топливного насоса высокого давления.

2. Топливные форсунки с электронным управлением

Эти топливные форсунки имеют электронное управление по количеству топлива, давлению и времени. Электронный соленоид получает данные от электронного модуля управления (ECM) автомобиля.

Конструкция топливных форсунок

Упрощенная конструкция топливной форсунки напоминает насадку садового шланга, которая используется для распыления воды на траву. Ту же задачу выполняет топливная форсунка, но разница в том, что вместо воды топливо распыляется и «распыляется» внутри двигателя, попадая в камеру сгорания.

Давайте разберемся в конструкции и работе топливной форсунки, рассмотрев топливные форсунки как с механическим, так и с электронным управлением.

Топливная форсунка с механическим управлением

Топливная форсунка с механическим управлением состоит из следующих частей:

· Корпус форсунки — внешний корпус или «оболочка», внутри которой расположены все остальные части форсунки. Внутренняя часть корпуса форсунки должна содержать точно спроектированный капилляр или канал, через который топливо под высоким давлением из топливного насоса может течь для распыления и впрыска.

· Плунжер. В топливной форсунке может использоваться поршень, который используется для открытия или закрытия форсунки под действием давления топлива. Он управляется комбинацией пружин и прокладок.

· Пружины. Внутри топливных форсунок с механическим управлением используются одна или две пружины. К ним относятся:

1. Пружина плунжера. Движение плунжера вперед и назад контролируется пружиной плунжера, которая сжимается из-за повышенного давления топлива. Когда давление топлива внутри топливной форсунки увеличивается до уровня, превышающего заданную комбинацию пружины и регулировочной шайбы, игла в форсунке поднимается, топливо распыляется и впрыскивается, а по мере снижения давления форсунка закрывается.

2. Основная пружина. Основная пружина используется для управления давлением открытия впрыска. Основная пружина действует против действия давления топлива, создаваемого топливным насосом.

Топливная форсунка с электронным управлением

Это «интеллектуальный» тип топливной форсунки, которая управляется электронным блоком управления (ECM) двигателя, также известным как мозг современных двигателей.

Топливные форсунки с электронным управлением состоят из следующих частей:

· Корпус форсунки. Как и у механически управляемой топливной форсунки, корпус форсунки этого типа представляет собой точно спроектированную полую оболочку, внутри которой расположены все остальные компоненты.

· Плунжер. Как и в топливных форсунках с механическим управлением, плунжер может использоваться для открытия и закрытия форсунки, но в топливных форсунках с электронным управлением открытие форсунки управляется электронным способом с помощью электромагнитов или соленоидов.

· Пружина. Так же, как и в топливной форсунке с механическим управлением, пружина плунжера используется для удержания плунжера в его положении до тех пор, пока не будет достигнуто давление впрыска, а затем, при необходимости, для закрытия сопла топливной форсунки.

· Электромагниты. В отличие от топливных форсунок с механическим управлением, форсунки этого типа оснащены электромагнитами или соленоидами вокруг плунжера, которые управляют открытием форсунки. Это делается путем получения электронного сигнала от электронного модуля управления двигателем через электронное соединение, соединяющее топливную форсунку с электронным модулем управления двигателем.

· Электронный штекер/соединение. Топливная форсунка с электронным управлением имеет разъем, через который электронный сигнал от ECM двигателя передается на форсунки. Это открывает форсунку для распыления топлива.

Распространенные проблемы и неисправности турбонагнетателя

Распространенные проблемы с топливной форсункой

Что такое топливная форсунка и как она работает?

Содержание

Введение

«Улучшение технологии сегодня приведет к повышению эффективности завтра» очень правильно сказано, поскольку увеличение зависимости человека от машин не только облегчает жизнь, но и увеличивает потребность в топливе. , особенно если мы говорим об автомобилях, количество транспортных средств на дорогах значительно увеличилось с начала 20-го века, что напрямую отражает потребности в топливе, а также цены, поэтому для исследователей возникла необходимость создать инновационную систему, которая может сделать привод доступный, а также надежный. Для решения этой проблемы в 1920 Компания Bosch придумала название устройства «Fuel Injector» для дизельного двигателя, что стало настоящим бумом в области двигателей внутреннего сгорания, так что давайте углубимся в подробности.

Что такое топливная форсунка?

Топливная форсунка представляет собой механическое устройство с электронным управлением, которое используется для впрыска/распыления (точно так же, как шприц) топлива в двигатель для приготовления правильной воздушно-топливной смеси, которая, в свою очередь, обеспечивает эффективное сгорание в двигателе?

Расположение топливных форсунок различается для разных конструкций двигателей, но обычно они устанавливаются на головке двигателя наконечником внутрь камеры сгорания двигателя.

Зачем они нам нужны?

Топливные форсунки необходимы всем автомобилям в наши дни, потому что-

  • Принцип работы двигателей внутреннего сгорания прямо указывает на то, что чем качественнее топливно-воздушная смесь, тем лучше будет ее сгорание, что, в свою очередь, обеспечивает более высокий КПД двигателя. , поэтому нам нужны топливные форсунки, которые обеспечивают гораздо лучшее качество топливовоздушной смеси, чем карбюраторы.
  • Неправильное смешивание топлива и воздуха, обеспечиваемое карбюраторами, оставляет различные несгоревшие частицы внутри камеры сгорания двигателя внутреннего сгорания, что приводит к неправильному распространению пламени сгорания, из-за которого возникает неисправность двигателя, известная как детонация или детонация, чтобы избежать это почти все транспортные средства на дороге сегодня используют технологию впрыска топлива.
  • Потери топлива в виде нагара или несгоревших частиц внутри камеры сгорания непосредственно отражают пробег автомобиля, что нежелательно, поэтому во избежание этого становится необходимым внедрение технологии впрыска топлива.
  • В случае карбюраторов контроль качества и времени топливовоздушной смеси (дозатор топлива) не является точным, как в карбюраторах, регулировка может выполняться механически, но когда речь идет о топливных форсунках, благодаря их интеллектуальному блоку с электронным управлением или E.C.U. достигается высокая точность дозирования топлива.
  • Было замечено, что не только пробег, но и производительность автомобилей с впрыском топлива лучше, чем у автомобилей с карбюратором.

Читайте также:

  • Типы тормозной системы в автомобиле
  • Что такое главный цилиндр и как он работает?
  • Что такое усилитель тормозов и как он работает?

Типы топливных форсунок

Развитие технологий впрыска топлива привело к появлению различных механизмов впрыска топлива, таких как впрыск топлива через корпус дроссельной заслонки, многоточечный впрыск топлива, последовательный впрыск топлива и непосредственный впрыск, которые можно использовать в зависимости от области применения. но когда дело доходит до типов топливных форсунок, то классифицировать их действительно сложно. По нашему мнению, топливные форсунки можно разделить на –

На основе топлива

На основе впрыска топлива форсунки бывают двух типов-

1. Форсунки дизельного топлива

топлива, чем бензин) непосредственно в камеру сгорания дизеля для дальнейшего сгорания за счет сжатия.

Капилляр и сопло дизельных форсунок выполнены таким образом, что они могут образовывать дизельные пакеты при распылении топлива внутри камеры сгорания.

Для дизельных топливных форсунок требуется более высокая производительность впрыска, чем для бензиновых, поскольку дизельное топливо тяжелее бензина.

2. Бензиновые топливные форсунки

Это топливные форсунки, используемые для впрыска или распыления бензина непосредственно или через впускной коллектор в камеру сгорания для дальнейшего искрового сгорания.

Капилляр и сопло бензиновых топливных форсунок изготавливаются меньше или такими же, как у дизельных топливных форсунок, в зависимости от требований.

Поскольку бензин легче дизельного топлива, для бензиновых форсунок требуется меньшая прокачка, чем для дизельных форсунок.

На основе дозирования топлива

На основе дозирования топлива (контроля скорости, количества и давления топлива) топливные форсунки бывают 2 типов-

1. Форсунки с механическим управлением

Они - это топливные форсунки, в которых управление скоростью, количеством, моментом подачи топлива и давлением осуществляется механически с помощью пружины и плунжера, который получает вход от кулачка и топливного насоса, или от распределителя топлива (усовершенствованный).

2. Топливные форсунки с электронным управлением

Это топливные форсунки, в которых управление скоростью подачи топлива, количеством, давлением и синхронизацией осуществляется электронным способом с помощью электронного соленоида, который получает входные данные либо от распределителя топлива, либо от электронный блок управления (усовершенствованный) автомобиля.

Конструкция топливных форсунок

Конструкция топливной форсунки напоминает форсунку садового душа, которая используется для распыления воды на траву, ту же цель выполняет топливная форсунка, но разница заключается в том, что вместо водяного топлива , форсунка распыляет топливо внутри двигателя. позволяет понять конструкцию топливных форсунок, рассматривая топливные форсунки с механическим управлением и топливные форсунки с электронным управлением —

Топливная форсунка с механическим управлением

Топливная форсунка с механическим управлением, состоящая из частей:

  • Корпус форсунки форсунки устроены так же, как садовый душ. Внутренняя часть корпуса форсунки сконструирована таким образом, что в ней находится точно спроектированный капилляр или канал, через который топливо под высоким давлением из топливного насоса может течь для дальнейшего распыления.
  • Плунжер – Плунжер используется на форсунке или узком конце топливной форсунки, который используется для открытия или закрытия форсунки под действием давления топлива, регулируемого распределителем топлива или регулятором двигателя.
  • Пружины – 2 пружины используются внутри топливных форсунок с механическим управлением, которые-
  1. Пружина плунжера- Движение плунжера вперед и назад контролируется пружиной плунжера, которая действует, когда давление топлива внутри топлива Увеличение форсунки приводит к открытию форсунки и возвращается в исходное положение при снижении давления, что, в свою очередь, закрывает форсунку.
  2. Основная пружина- Основная пружина используется для управления входом топливной форсунки. Основная пружина работает под действием давления топлива, создаваемого топливным насосом.

Читайте также:

  • Что такое двигатель Стирлинга — типы, основные части, работа и применение?
  • Что такое порядок работы 4- и 6-цилиндрового двигателя?
  • Типы коробок передач – полное объяснение
Топливная форсунка с электронным управлением

Это интеллектуальный тип топливной форсунки, которая управляется электронным блоком управления двигателем, который также известен как мозг современных двигателей.

Топливные форсунки с электронным управлением состоят из следующих частей –

  • Корпус форсунки. Как и у форсунки с механическим управлением, корпус форсунки этого типа представляет собой точно спроектированную полую оболочку, внутри которой расположены все остальные компоненты.
  • Плунжер- Как и в топливной форсунке с механическим управлением, плунжер используется для открытия и закрытия сопла, но в топливной форсунке с электронным управлением открытие сопла управляется электронным способом с помощью электромагнитов.
  • Пружина – Как и в топливной форсунке с механическим управлением, пружина плунжера используется для удержания плунжера в его положении, чтобы при необходимости закрыть сопло топливной форсунки.
  • Электромагниты – В отличие от топливных форсунок с механическим управлением, этот тип форсунок оснащен электромагнитами вокруг плунжера, который управляет открытием форсунки, принимая электронный сигнал от электронного блока управления двигателем через электронный штекер или штуцер, соединяющий топливную форсунку с электронным блоком управления двигателем.
  • Электронный штекер/соединение- На верхнем конце топливной форсунки с электронным управлением имеется штуцер/штекер, через который электронный сигнал от электронного блока управления двигателем передается на электромагниты, которые, в свою очередь, открывают форсунку, чтобы для распыления топлива.

Рабочий

До сих пор нам ясно назначение топливной форсунки. Итак, чтобы понять, как различные части топливной форсунки выполняют эту задачу, давайте рассмотрим механические и электронные топливные форсунки –

Топливная форсунка с механическим управлением

Когда мы включаем зажигание автомобиля, чтобы запустить двигатель, топливный насос двигателя начинает перекачивать топливо к распределителю топлива, который, в свою очередь, начинает регулировать время и количество распыляемого топлива.

  • После топливораспределителя топливо подается к форсунке по указанию топливораспределителя по топливопроводам.
  • В топливной форсунке, когда это топливо под высоким давлением достигает топливной форсунки, из-за высокого давления это топливо толкает впускную или главную пружину, чтобы попасть в топливную форсунку.
  • Когда это топливо попадает в топливную форсунку, оно начинает толкать пружину плунжера, которая, в свою очередь, выталкивает плунжер наружу, и происходит открытие форсунки, что приводит к распылению топлива.
  • При завершении впрыска топлива для определенного цикла в соответствии с сигналом от распределителя топлива давление внутри топливной форсунки снижается, благодаря чему пружина плунжера остается в исходном положении, что приводит к закрытию форсунки и распылению топлива. топливо останавливается для этого конкретного цикла.
Топливная форсунка с электронным управлением

Когда мы ON зажигание автомобиля для того, чтобы запустить двигатель, топливный насос вместе с электронным блоком управления двигателем.

  • Топливный насос начинает подавать топливо к топливной форсунке, а время, количество и давление топлива, поступающего в топливную форсунку, регулируются электронным блоком управления.
  • Электронный блок управления посылает электронный сигнал на топливную форсунку с помощью электронного соединения, благодаря этим электронным сигналам от ECU активируются электромагниты внутри топливной форсунки, что, в свою очередь, выталкивает плунжер наружу, что приводит к открытию форсунки и, наконец, происходит распыление топлива.
  • После завершения данного цикла электронный сигнал от ЭБУ прекращается, что в свою очередь деактивирует электромагниты, благодаря чему плунжер возвращается в исходное положение, что приводит к закрытию форсунки и прекращению распыления топлива.
  • Закрытие сопла поддерживается пружиной плунжера.

Это все о топливной форсунке. Если вы нашли эту статью полезной и информативной, не забудьте поставить лайк и поделиться ею с друзьями.


Learn more