Сколько тактов в двигателе автомобиля


Принцип работы и рабочие циклы двигателя автомобиля (ДВС)

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя и его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).

Принцип работы ДВС - схематично

1. Впуск

По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

2. Сжатие

После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

3. Расширение или рабочий ход

В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 - 0.75 МПа, а температура до 950 - 1200 оС.

4. Выпуск

При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.


Впуск

При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 - 0.095 МПа, а температура 40 - 60°С.

Сжатие

Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход

Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 - 9 МПа, а температура 1800 - 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ - происходит рабочий ход. Около НМТ давление снижается до 0.3 - 0.5 МПа, а температура до 700 - 900оС.

Выпуск

Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 - 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Значит после рабочего хода в первом цилиндре следующий происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Диаграмма работы двигателя по схеме 1-2-4-3

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Рабочий цикл двигателя: что это такое

Существует несколько различных типов двигателей, при этом на колесном, гусеничном, водном и даже иногда воздушном транспорте  (грузовые и легковые авто,  спецтехника, моторные  лодки, самолеты и т.п.), нередко можно встретить двигатель внутреннего сгорания (ДВС).

Так или иначе, широкое распространение силовой агрегат данного типа получил благодаря своей автономности, универсальности, а также целому ряду других преимуществ. При этом агрегаты имеют много различных параметров и характеристик, среди которых стоит отдельно выделить рабочий цикл.  Далее мы поговорим о том,  что означает рабочий цикл автомобильного двигателя внутреннего сгорания.

Содержание статьи

Рабочий цикл ДВС: что нужно знать

Если рассматривать принцип работы двигателя внутреннего сгорания, топливо в таких агрегатах сгорает в закрытой камере (камера сгорания), куда подается готовая топливно-воздушная смесь или воздух и топливо по отдельности (дизельные агрегаты и моторы с прямым впрыском).

Работа такого мотора основана на том, что во время сгорания топлива происходит расширение газов.  Указанные газы становятся причиной роста давления в цилиндре, благодаря чему поршень получает «толчок». Затем энергия, переданная на поршень, преобразуется в механическую работу.  Давайте рассмотрим принцип работы двигателя, а также рабочие циклы более подробно.

Итак, рабочий  цикл двигателя – последовательно повторяющиеся процессы, которые протекают в цилиндрах в рамках трансформации тепловой энергии топлива в полезную механическую работу. Если  один рабочий цикл совершается за 2 хода поршня, когда коленчатый вал делает один оборот, такой двигатель является двухтактным.

Двигатели, которые устанавливаются на автомобили, обычно работают по четырехтактному циклу (четырехтактный двигатель). Это значит, рабочий цикл совершается за два оборота коленвала и четыре хода поршня. Работу такого ДВС можно разделить на такты: такт впуска, такт сжатия, такт рабочего хода, такт выпуска.

Как работает четырехтактный бензиновый двигатель

Чтобы было понятнее, начнем с того, что когда поршень в цилиндре во время работы  ДВС начинает занимать крайние положения (максимально приближен или удален по отношению к оси коленчатого вала), эти положения принято называть ВМТ и НМТ. ВМТ означает верхняя мертвая точка, тогда как НМТ значит нижняя мертвая точка.  Теперь вернемся к тактам.

  • На такте впуска коленчатый вал двигателя делает первую половину оборота, при этом поршень из ВМТ движется в НМТ. В этот момент  открыт впускной клапан, а выпускной клапан закрыт. При движении поршня вниз в цилиндре образуется разрежение, в результате чего  в цилиндр «засасывается» топливно-воздушная смесь через открытый впускной клапан. Рабочая смесь состоит из воздуха и распыленного топлива (в некоторых двигателях на такте впуска поступает только воздух).
  • Следующим тактом является сжатие. После того, как произойдет наполнение цилиндра топливно-воздушной смесью, коленвал начинает совершать вторую половину оборота.  В этот момент поршень начинает подниматься из НМТ в ВМТ. При этом впускной клапан уже закрыт. Далее поршень сжимает смесь в герметично закрытом цилиндре. Чем больше уменьшается объем цилиндра, тем сильнее сжимается смесь. Результатом такого сжатия является повышение температуры смеси.
  • К тому времени, когда поршень подойдет к концу такта сжатия (практически дойдет до ВМТ), смесь в бензиновых двигателях воспламеняется от внешнего источника (электрическая искра на свече зажигания). Затем топливный заряд сгорает, в результате в цилиндре резко повышается температура и давление. В этот момент  поршень уже перемещается обратно из ВМТ в нижнюю  мертвую точку, принимая на себя энергию расширяющихся газов.
Далее от поршня через шатун энергия передается на КШМ, позволяя вращать коленчатый вал двигателя. Коленвал в это время делает третий по счету полуоборот, а движение поршня из ВМТ в НМТ называется рабочим ходом поршня.
  • После того, как поршень почти дойдет до НМТ в конце рабочего хода, происходит  открытие выпускного клапана. После этого давление в цилиндре снижается,  несколько падает и температура. Затем начинается такт выпуска.  В это время коленчатый вал совершает последний полуоборот, при этом поршень снова поднимается из НМТ в ВМТ, буквально «выталкивая» отработавшие газы из цилиндра через открытый выпускной клапан в выпускной коллектор.

Работа четырехтактного дизельного ДВС

Хотя дизель конструктивно похож на бензиновый мотор, в дизельных двигателях изначально сжимается только воздух, после чего прямо в камеру сгорания впрыскивается дизтопливо. При этом  воспламенение такой смеси происходит самостоятельно (под большим давлением, а также в результате контакта с нагретым от сильного сжатия воздухом).

Простыми словами, воздух сначала сжимается и нагревается, в среднем,  до 650 градусов по Цельсию. В самом конце такта сжатия в камеру сгорания топливная форсунка впрыскивает солярку, затем смесь дизтоплива и воздуха самовоспламеняется.

С учетом данной особенности на такте впуска (поршень движется из ВМТ в НМТ), за счет разряжения в цилиндр подается воздух через  открытый впускной клапан. Давление и температура воздуха в этот момент имеют низкие показатели.

Затем начинается сжатие, поршень поднимается из НМТ в верхнюю мертвую точку. Как и в случае с бензиновым мотором, впускной и выпускной клапаны  полностью закрыты, что позволяет поршню  сильно сжать воздух.

Обратите внимание, для дизельного двигателя очень важно, чтобы температура сжатого воздуха была достаточной для воспламенения топлива. По этой причине степень сжатия в дизельных ДВС намного выше, чем в бензиновых.  Далее, когда поршень практически доходит до ВМТ, происходит топливный впрыск (момент впрыска дизельного двигателя).

Если учесть, что давление воздуха в цилиндре высокое (необходимо для его нагрева), дизельное топливо в момент впрыска должно также подаваться под  очень высоким давлением. Фактически, форсунке нужно «продавить» солярку в камеру сгорания, в которой уже находится сильно сжатый поршнем и горячий воздух.

Для решения этой задачи многие системы питания дизельного двигателя имеют ТНВД (топливный насос высокого давления). Также в схеме могут быть использованы насос-форсунки (форсунка и насос объединены в одно устройство). Еще существуют варианты, когда питание  двигателя реализовано при помощи так называемого «аккумулятора» высокого давления. Речь идет о системах Common Rail.

Рекомендуем также прочитать статью о том, что такое крутящий момент и мощность двигателя. Из этой статьи вы подробно узнаете о данных характеристиках, в чем измеряется мощность и момент двигателя, как эти показатели зависят друг от друга и т.д.

После воспламенения заряда происходит расширение газов и начинается рабочий ход поршня. Температура в  результате горения смеси  повышается, происходит увеличение давления. Указанное давление газов  «толкает» поршень, происходит рабочий ход. Завершающим этапом становится выпуск, когда поршень после совершения рабочего хода снова поднимается из НМТ в ВМТ.  Затем весь описанный выше процесс (рабочий цикл двигателя) повторяется.

Синхронная работа нескольких цилиндров

Выше были описан принцип работы ДВС, при этом рассматривались процессы в одном цилиндре. Однако, как известно, большинство двигателей являются многоцилиндровыми. Для того чтобы добиться ровной и синхронной работы всех цилиндров,  рабочий ход поршня в каждом отдельном цилиндре должен происходить через  равный промежуток времени (одинаковые углы поворота коленвала).

При  этом последовательность, с которой чередуются  одинаковые такты в разных цилиндрах, принято называть  порядком работы ДВС (например, 1-2-4-3). На практике это выглядит таким образом, что после рабочего хода в цилиндре 1, далее рабочий ход происходит во втором, четвертом, а уже затем в третьем цилиндре.

В зависимости от компоновки двигателя и его конструктивных особенностей последовательность (порядок работы) может быть разной. Дело в том, что двигатели бывают не только рядными, но и V-образными.

Рекомендуем также прочитать статью о КПД дизельного двигателя. Из этой статьи вы узнаете о данном параметре и от чего зависит КПД, а также почему дизельные моторы имеют КПД выше по сравнению с бензиновыми ДВС.

Во втором случае такая компоновка позволяет разместить цилиндры под углом, при этом становится возможным увеличить общее количество цилиндров без увеличения самой длины блока цилиндра двигателя. Такое решение позволяет разместить мощный многоцилиндровый ДВС под капотом не только большого внедорожника или грузовика, но и легкового авто.

Читайте также

устройство, принцип работы и классификация


Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает  благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).


Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты  (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  1. Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  2. Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
  3. Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

    Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

    Замену ГРМ проводят через каждые 60000 - 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

    Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  4. Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  5. Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки  выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  6. Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
  7. Выхлопная система. Служит для отвода от мотора продуктов сгорания.
    Включает:
    - выпускной коллектор (приёмник отработанных газов),
    - газоотвод (приёмная труба, в народе- «штаны»),
    - резонатор для разделения выхлопных газов и уменьшения их скорости,
    - катализатор (очиститель) выхлопных газов,
    - глушитель (корректирует направление потока газов, гасит шум).
  8. Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
  9. Система впрыска. Позволяет организовать дозированную подачу топлива.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.


Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС. 

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения "Базовое устройство двигателя внутреннего сгорания автомобиля", на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива - тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  1. Поршень в цилиндре движется вниз.
  2. Открывается впускной клапан.
  3. В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  4. Поршень поднимается.
  5. Выпускной клапан закрывается.
  6. Поршень сжимает воздух.
  7. Поршень доходит до верхней мертвой точки.
  8. Срабатывает свеча зажигания.
  9. Открывается выпускной клапан.
  10. Поршень начинает двигаться вверх.
  11. Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE. 

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.


Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  1. Такт выпуска.
  2. Такт сжатия воздуха.
  3. Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  4. Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.


Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй - опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).


Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов: 

  1. Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  2. Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.


А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.


Классификация двигателей в зависимости от конструкции

  • Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса:

  1. Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  2. Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.


Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  2. Высокая скорость заправки двигателя топливом.
  3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo" P1800. Единственное, за время работы двигатель два раза проходил капремонт.
  4. Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

Недостатки ДВС

При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

Двигатель внутреннего сгорания — урок. Физика, 8 класс.

Обрати внимание!

Двигатель внутреннего сгорания — распространённый вид теплового двигателя, который работает на жидком топливе (бензин, керосин, нефть) или горючем газе.

 

Двигатель состоит из цилиндра, в котором перемещается поршень \( 3\), соединённый при помощи шатуна \(4\) с коленчатым валом \(5\).

 

Два клапана, впускной \(1\) и выпускной \(2\), при работе двигателя автоматически открываются и закрываются в нужные моменты.

  1. клапан для подачи горючей смеси;
  2. клапан для удаления отработанных газов;
  3. цилиндр;
  4. шатун;
  5. коленчатый вал;
  6. свеча для воспламенения горючих газов в цилиндре 3.

 

Рис. \(1\). Устройство двигателя

 

Ход поршня — расстояние между мёртвыми точками, крайними положениями поршня в цилиндре.

 

Такие двигатели называют четырёхтактными, т.к. рабочий цикл происходит за четыре хода или такта: впуск (а), сжатие (б), рабочий ход (в) и выпуск (г).

 

 

Рис. \(2\). Процесс работы двигателя

 

1 такт (впуск) — поршень «всасывает» горючую смесь.

 

 

2 такт (сжатие) — при сжатии температура смеси и давление повышаются. 

 

3 такт (рабочий ход) —  рабочая смесь воспламеняется от электрической искры свечи зажигания (поршень под действием этого давления начинает перемещаться к нижней мёртвой точке, создавая крутящий момент). 

 

 

4 такт (выпуск) — выброс отработанных газов.

 

 

После такта выпуска начинается новый рабочий цикл, всё повторяется.

Для того чтобы вращение вала было более равномерным, двигатель обычно делают многоцилиндровым: 2-, 3-, 4-, 6-, 8-цилиндровым и т.д.

Источники:

Рис. 1. Устройство двигателя. © ЯКласс.
Рис. 2. Процесс работы двигателя. © ЯКласс.
http://usauto.ucoz.ru/news/bilet_6/2011-04-26-4

http://autooboz.info/wp-content/uploads/2007/09/dvigatel-vnutrennego-sgoraniya2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-3.jpg

 

Принцип работы 2х тактного и 4х тактного двигателей

При выборе силового оборудования необходимо уделить особое внимание типу двигателя. Существует два типа двигателей внутреннего сгорания: 2-х тактный и 4-х тактный.

Принцип действия двигателя внутреннего сгорания основан на использовании такого свойства газов, как расширение при нагревании, которое осуществляется за счет принудительного воспламенения горючей смеси, впрыскиваемой в воздушное пространство цилиндра.

Зачастую можно услышать, что 4-х тактный двигатель лучше, но чтобы понять, почему, необходимо более подробно разобрать принципы работы каждого.

Основными частями двигателя внутреннего сгорания, независимо от его типа, являются кривошипно-шатунный и газораспределительный механизмы, а также системы, отвечающие за охлаждение, питание, зажигание и смазку деталей.

Передача полезной работы расширяющегося газа осуществляется через кривошипно-шатунный механизм, а за своевременный впрыск топливной смеси в цилиндр отвечает механизм газораспре6деления.

Четырехтактные двигатели - выбор компании Honda

Четырехтактные двигатели экономичные, при этом их работа сопровождается более низким уровнем шума, а выхлоп не содержит горючей смеси и значительно экологичней чем у двухтактного двигателя.  Именно поэтому компания Honda при изготовлении силовой техники использует только четырехтактные двигатели. Компания Honda уже многие годы представляет свои четырехтактные двигатели на рынке силовой техники и добилась высочайших результатов, при этом их качество и надежность ни разу не подвергались сомнению. Но всё же, давайте рассмотрим принцип работы 2х и 4х тактных двигателей.

Принцип работы двухтактного двигателя

Рабочий цикл 2-х тактного двигателя состоит из двух этапов: сжатие и рабочий ход.

Сжатие. Основными положениями поршня являются верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Двигаясь от НМТ к ВМТ, поршень поочередно перекрывает сначала продувочное, а затем выпускное окно, после чего газ, находящийся в цилиндре, начинает сжиматься. При этом через впускное окно в кривошипную камеру поступает свежая горючая смесь, которая будет использована в последующем сжатии.

Рабочий ход. После того, как горючая смесь максимально сжата, она воспламеняется при помощи электрической искры, образуемой свечой. При этом температура газовой смеси резко возрастает и объем газа стремительно растет, осуществляя давление, при котором поршень начинает движение к НМТ. Опускаясь, поршень открывает выпускное окно, при этом продукты горения горючей смеси выбрасываются в атмосферу. Дальнейшее движение поршня приводит к сжатию свежей горючей смеси и открытию продувочного отверстия, через которое горючая смесь поступает в камеру сгорания.

Основным недостатком двухтактного двигателя является большой расход топлива, причем часть топлива не успевает принести пользу. Это связано с наличием момента, при котором продувочное и выпускное отверстие одновременно открыты, что приводит к частичному выбросу горючей смеси в атмосферу. Еще идёт постоянный расход масла, так как 2х тактные двигатели работают на смеси бензина и масла. Очередное неудобство - в необходимости постоянно готовить топливную смесь. Главными преимуществами двухтактного двигателя остаются его меньшие размеры и вес по сравнению с 4х тактным аналогом, но размеры силовой техники позволяют использовать на них 4х тактные двигатели и испытывать намного меньше хлопот в ходе эксплуатации. Так что уделом 2х тактных моторов осталось различное моделирование, в частности, авиамоделирование, где даже лишних 100г имеют значение. 

Принцип работы четырехтактного двигателя

Работа четырехтактного двигателя значительно отличается от работы двухтактного. Рабочий цикл четырехтактного двигателя состоит из четырех этапов: впуск, сжатие, рабочий ход и выпуск, что стало возможным за счет применения системы клапанов.

Во время впускного этапа поршень двигается вниз, открывается впускной клапан, и в полость цилиндра поступает горючая смесь, которая при смешении с остатками отработанной смеси образует рабочую смесь.

При сжатии поршень движется от НМТ к ВМТ, оба клапана закрыты. Чем выше поднимается поршень, тем выше давление и температура рабочей смеси.

Рабочий ход четырехтактного двигателя представляет собой принудительное движение поршня от ВМТ к НМТ за счет воздействия резко расширяющейся рабочей смеси, воспламененной искрой от свечи. Как только поршень достигает НМТ, открывается выпускной клапан.

Во время выпускного этапа продукты сгорания, вытесняемые поршнем, движущимся от НМТ к ВМТ, выбрасываются в атмосферу через выпускной клапан.

За счет применения системы клапанов четырехтактные двигатели внутреннего сгорания более экономичны и экологичны - ведь выброс неиспользованной топливной смеси исключен. В работе они значительно тише, чем 2х тактные аналоги, и в эксплуатации намного проще, ведь работают на обычном АИ-92, которым вы заправляете свою машину. Нет необходимости в постоянном приготовлении смеси масла и бензина, ведь масло в данных двигателях заливается отдельно в масляный картер, что значительно уменьшает его потребление. Вот именно поэтому компания Honda производит только 4х тактные двигатели и достигла в их производстве колоссальных успехов.

Принцип работы двигателя внутреннего сгорания

Современный автомобиль, чаще всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.

Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.

Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).

 

Первый такт - такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

 

Второй такт - такт сжатия

Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

 

Третий такт - рабочий ход

Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

 

Четвертый такт - такт выпуска

Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

 

 

После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Двигатели. Рядный? V-образный? «Оппозит»? — ДРАЙВ

В начале XX века, когда конструкторская мысль бушевала вовсю, двигатель рабочим объёмом 10 л мог быть как одноцилиндровым, так, к примеру, и рядной «восьмёркой». Тогда никого особо не удивляли установленная на автомобиле рядная «шестёрка» объёмом 23 л или семицилиндровый звездообразный мотор с аэроплана...

Однако рост мощностей, оборотов и ожесточенная борьба за снижение себестоимости всё расставили по местам. Простейший одноцилиндровый мотор для автомобилестроителей остался в далёком прошлом. Средний объём цилиндра двигателя обычного автомобиля сейчас — от трёхсот до шестисот кубических сантиметров. Литровая мощность — от 35 л.с./л для безнаддувного дизеля до 100 л.с./л для форсированного бензинового «атмосферника». Для серийных двигателей это оптимум, выходить за рамки которого просто невыгодно.

Очень маленькие цилиндры часто встречаются на японских микролитражках: например, объём рядной «четвёрки» у Subaru R1 — всего 658 см³. Из «европейцев» отличился трёхцилиндровый дизельный Smart — 799 «кубиков». Есть цилиндры-напёрстки и у «корейцев»: трехцилиндровый Matiz — это 796 «кубиков», а четырёхцилиндровый — 995. «Четвёркой» объёмом 1086 см³ оснащаются Hyundai i10 и Kia Picanto. На другом полюсе — конечно же «американцы». Объём V-образной «восьмёрки» купе Chevrolet Corvette Z06 составляет 7011 см³. Хотя японцы, например, оснащали внедорожник Nissan Patrol предыдущего поколения рядной «шестёркой» TB48DE объёмом 4758 «кубиков».

Сегодня двигатель мощностью 100 л.с. в большинстве случаев окажется четырёхцилиндровым, у 200-сильного будет четыре, пять или шесть цилиндров, у 300-сильного — восемь... Но как эти цилиндры расположить? Иными словами — по какой схеме строить многоцилиндровый двигатель?

Простота хуже компактности

О чём болит голова у конструктора? Во-первых, о том, как упростить конструкцию двигателя, чтобы он был дешевле в производстве и легче в обслуживании. Самый простой двигатель — рядный (мы будем обозначать такие моторы индексами R2, R3, R4 и т. д.). Располагаем в ряд нужное количество цилиндров — получаем необходимый рабочий объём.

  • Двигатель R3 (А). Угол между кривошипами — 120°.
  • Добиться равномерности вспышек в двухцилиндровом двигателе (В) можно только при двухтактном цикле.
  • А такой мотор (C), например, стоит на «Оке». Поршни движутся синфазно.

Двух- и трёхцилиндровые двигатели встречаются на автомобилях нечасто, хотя мода на «двухгоршковые» моторчики набирает обороты. Тому способствуют продвинутые системы смесеобразования и применение турбонаддува (как, например, на 85-сильной двухцилиндровой турбоверсии хэтчбека Fiat 500). А вот рядная «четвёрка» попала в самый массовый диапазон рабочего объёма легковых автомобилей — от 1,0 до 2,4 л.

В современных четырёхтактных двухцилиндровых двигателях, вроде турбомотора Фиата 500, проблему вибраций отчасти решает балансирный вал.

Пятицилиндровые рядные моторы появились на серийных автомобилях сравнительно недавно — в середине 70-х годов. Первым был Mercedes-Benz со своими дизельными «пятёрками» — они появились в 1974 году (на модели 300D с кузовом W123). Через два года увидел свет пятицилиндровый двухлитровый бензиновый двигатель Audi. А в конце 80-х годов такие моторы сделали Volvo и FIAT.

Рядные «шестёрки», до недавнего времени столь популярные в Европе, нынче во мгновение ока стали вымирающим видом. А про рядную «восьмёрку» и говорить нечего — с ней практически распрощались еще в 30-х годах. Почему?

Ответ прост. С ростом числа цилиндров двигатель становится длиннее, и это создаёт массу неудобств при компоновке. Например, втиснуть поперёк моторного отсека переднеприводного автомобиля рядную «шестёрку» удавалось в считанных случаях — можно припомнить лишь английский Austin Maxi 2200 середины 60-х годов (тогда конструкторам пришлось спрятать коробку передач под двигателем) и Volvo S80 с суперкомпактной коробкой передач.

Два мотора R3, составленные друг за другом, дают великолепный результат — абсолютно уравновешенную рядную «шестёрку».

Как укоротить рядный мотор? Его можно «распилить» пополам, поставить две половинки рядом друг с другом и заставить работать на один коленвал. Такие моторы, у которых цилиндры расположены в виде латинской буквы V, вдвое короче рядных — наибольшее распространение получили двигатели с углом развала блока 60° и 90°. А V-образный мотор с углом развала блока 180°, в котором цилиндры расположены друг против друга, называют оппозитным (или «боксером» — обозначения В2, В4, В6 и т. д. происходят именно от слова boxer).

Такие моторы сложнее рядных — например, у них две головки цилиндров (каждая со своей прокладкой и коллекторами), больше распредвалов, сложнее схема их привода. А оппозитные двигатели ещё и занимают много места в ширину. Поэтому из компоновочных соображений они применяются довольно редко — производителей «боксеров» можно пересчитать по пальцам.

А как сделать V-образный двигатель еще компактнее? Одно из простых, на первый взгляд, решений — установить угол развала блока менее 60°. Действительно, такие моторы были, но редко — можно вспомнить, например, автомобили Lancia Fulvia 70-х годов с моторами V4, угол развала блока которых составлял 23°. Почему же этим не пользовались все? Дело в том, что перед конструктором двигателя всегда стоит ещё одна проблема — вибрации.

О силах и моментах

Вообще без вибраций поршневой двигатель внутреннего сгорания работать не может — так уж он устроен. Но бороться с ними нужно, и не только для повышения комфорта пассажиров. Сильные неуравновешенные вибрации могут вызвать разрушения деталей мотора — со всеми вылетающими и выпадающими оттуда последствиями...

Отчего возникают вибрации? Во-первых, в некоторых схемах двигателей вспышки в цилиндрах происходят неравномерно. Таких схем конструкторы по возможности избегают или стараются делать массивней маховик — это помогает сгладить пульсации крутящего момента. Во-вторых, при движении поршней вверх-вниз они то разгоняются, то замедляются, из-за чего возникают силы инерции — сродни тем силам, что заставляют пассажиров автомобиля кланяться при торможении или вдавливают их в спинки сидений при разгоне. В-третьих, шатун в двигателе движется вовсе не вверх-вниз, а совершает сложное движение. Да и возвратно-поступательное перемещение поршня от верхней мёртвой точки к нижней тоже нельзя описать простой синусоидой.

  • Силы инерции от двух масс, вращающихся на одном валу поодаль друг от друга, создают свободный момент.
  • В простейшем моторе есть свободные силы инерции, но нет моментов. Цилиндр-то один.

Поэтому среди сил инерции появляются составляющие с удвоенной, утроенной, учетверённой частотой вращения коленвала... Этими так называемыми силами инерции высших порядков, как правило, пренебрегают — они по сравнению с основной силой инерции (которой присвоили первый порядок) очень малы. Исключение составляют силы инерции второго порядка, с которыми приходится считаться. Плюс к этому, пары сил, приложенные на определённом расстоянии, образуют моменты — так происходит, когда в соседних цилиндрах силы инерции направлены в разные стороны.

Что сделать для того, чтобы уравновесить силы и моменты? Во-первых, можно выбрать схему мотора, в которой цилиндры и кривошипы коленчатого вала расположены таким образом, что силы и моменты взаимно уравновесят друг друга — всегда будут равны и направлены в противоположные стороны.

Яркий представитель вымершего племени автомобилей с рядной «восьмёркой» — модель 1930-х годов Alfa Romeo 8C.

А если ни одна из уравновешенных схем не подходит — например, из компоновочных соображений? Тогда можно попытаться по-другому расположить шейки коленвала и применить всякого рода противовесы, создающие силы и моменты, равные по величине, но противоположные по направлению основным уравновешиваемым силам. Иногда это можно сделать, разместив противовесы на коленчатом валу мотора. А иногда — на дополнительных валах, которые называют балансирными валами противовращения. Называются они так потому, что крутятся в другую сторону, нежели коленвал. Но это усложняет и удорожает двигатель.

Чтобы облегчить описание степени уравновешенности разных двигателей, мы подготовили сводную таблицу. Зелёным в ней выделены самоуравновешенные силы и моменты, а красным — свободные (те, что не уравновешены и вырываются на свободу — через опоры силового агрегата проходят на кузов автомобиля).

Степень уравновешенности (зелёная ячейка — уравновешенные силы или моменты, красная — свободные)
1 R2 R2* V2 B2 R3 R4 V4 B4 R5 VR5 R6 V6 VR6 B6 R8 V8 B8 V10 V12 B12
Силы инерции первого порядка
Силы инерции второго порядка
Центробежные силы**
Моменты от сил инерции первого порядка
Моменты от сил инерции второго порядка
Моменты от центробежных сил
* Поршни в противофазе.
** Уравновешиваются противовесами на коленчатом вале.

Что же получается? Из распространённых типов двигателей абсолютно уравновешенных всего два — это рядная и оппозитная «шестёрки». Теперь понимаете, почему BMW и Porsche так крепко держатся за такие моторы? Ну а о причинах, по которым от них отказываются остальные, мы уже упоминали. Теперь рассмотрим поподробнее остальные схемы.

Шестицилиндровый «оппозитник» водяного охлаждения Porsche. С левой и правой сторон блока в целях экономии стоят одинаковые головки, поэтому цепные приводы распредвалов пришлось устраивать и спереди, и сзади.

Уравновешенные и не очень

Из двухцилиндровых двигателей на автомобилях нынче применяется только один — двухцилиндровый рядный мотор с коленчатым валом, у которого кривошипы направлены в одну сторону (такой, например, стоял на отечественной «Оке»). Как видно, этот двигатель по степени уравновешенности похож на одноцилиндровый, поскольку оба поршня движутся вверх и вниз одновременно, в фазе. Для того чтобы уравновесить свободные силы инерции первого порядка, в моторе «Оки» слева и справа от коленвала применялись два вала с противовесами. А как же быть с силами второго порядка? Для того чтобы с ними справиться, пришлось бы добавить ещё два балансирных вала, что на двухцилиндровом моторе, изначально предназначенном для маленьких и дешёвых автомобилей, было бы совершенно неуместным.

Впрочем, это ещё ничего — много двухцилиндровых моторов выпускалось вообще без балансирных валов. Так было, например, на малышках Fiat 500 образца 1957 года. Да, вибрации были, их старались погасить подвеской силового агрегата... Но мотор зато получался простым и дешёвым! Дешевизна двухцилиндровых двигателей соблазняет разработчиков и сегодня: не зря же эту схему использовали создатели самого доступного автомобиля планеты, индийского хэтчбека Tata Nano.

Машин с оппозитной «двойкой» — по экономическим и компоновочным соображениям — было немного. Можно упомянуть, например, французский Citroen 2CV.

Двухцилиндровый двигатель, у которого кривошипы направлены в разные стороны (под углом 180°), можно встретить сегодня только на мотоциклах. Поскольку поршни в нём всегда движутся в противофазе, то он уравновешен лучше. Однако равномерного чередования вспышек в цилиндрах можно добиться только на двухтактных моторах — такие двигатели устанавливались на довоенные DKW и их прямых наследников, пластиковые гэдээровские Трабанты. По причине простоты и дешевизны никаких балансирных валов на них тоже не было, а с возникающими вибрациями просто мирились.

Автомобиль с двухцилиндровым V-образным мотором припоминается только один — отечественный НАМИ-1. А до наших дней этот тип двигателя дожил только на мотоциклах — вспомните американский Harley Davidson и его японских последователей с их V-образными «двойками» во всей хромированной красе. Такой мотор можно уравновесить практически полностью с помощью противовесов на коленчатом валу, но достичь равномерного чередования вспышек невозможно. Хорошо, что байкеры особого внимания на вибрации не обращают...

НАМИ-1 — прототип 1927 года.

Трёхцилиндровый двигатель уравновешен хуже, чем рядная «четвёрка», и поэтому производители трёхцилиндровых моторов — например, Subaru и Daihatsu — стараются оснащать их балансирными валами. В своё время опелевские двигателисты решили отказаться от балансирного вала, разрабатывая трёхцилиндровый мотор семейства Ecotec для Корсы второго поколения — в целях удешевления и уменьшения механических потерь. И трёхцилиндровая Corsa после дебюта в 1996-м была раскритикована немецкими автожурналистами: «По городу на переменных режимах ездить совершенно невозможно».

В самой популярной среди двигателистов рядной «четвёрке» остаётся свободной сила инерции второго порядка. Её можно уравновесить только балансирным валом, вращающимся с удвоенной скоростью. (Вы не забыли — сила инерции второго порядка действует с удвоенной частотой?) А для компенсации момента от балансирного вала придётся ставить ещё один, вращающийся в противоположную сторону. Дорого? Безусловно. Однако моторы с балансирными валами можно встретить на автомобилях Mitsubishi, Saab, Ford, Fiat и самых разных марок концерна Volkswagen.

Пример рядной «четвёрки» с балансирными валами — двухлитровый двигатель Audi. Валы располагаются по обе стороны от коленвала и с удвоенной скоростью вращаются в противоположные стороны. Здесь балансирные валы расположены снизу и соединены зубчатой передачей, а раньше (как, например, на приведённом на картинке внизу двигателе Saab 2.3) их располагали сверху и у каждого был свой шкив цепного привода.

Кстати, оппозитная «четвёрка» уравновешена лучше, чем рядная, — здесь есть только момент от сил инерции второго порядка, который стремится развернуть двигатель вокруг вертикальной оси. Однако и «оппозитник» воздушного охлаждения легендарного «Жука», и знаменитые «боксеры» Subaru обходились и обходятся без балансирных валов.

Subaru из компоновочных соображений предпочитает рядной «четвёрке» оппозитную. Что до вибраций, то силы инерции второго порядка у «боксера» уравновешены, но момент от них всё же остаётся свободным.

У рядных «пятёрок» с уравновешенностью дела обстоят не очень. Силы инерции компенсируются, но вот моменты от этих сил... Во время работы двигателя по блоку постоянно «пробегает» волна изгибающего момента, поэтому блок должен быть весьма жёстким. Однако и Mercedes-Benz, и Audi, и Volvo борются с вибрациями, дорабатывая подвеску силового агрегата или применяя специальные противовесы (как у наддувной «пятёрки» 2.5 TFSI на Audi TT RS). И только фиатовские мотористы применяли балансирный вал, который полностью уравновешивал все моменты.

  • На картинке FIAT JTD от хэтчбека Croma — потомок пятицилиндрового турбодизеля Fiat TD 125 объёмом 2387 см³, образованного путём добавления одного цилиндра к 1,9-литровой «четвёрке» TD 100. Балансирный вал — слева, в нижней части картера.
  • Под каким углом расположить кривошипы коленвала рядной «пятёрки»? 360° делим на пять... Правильно — 72°!

Кстати, практически все «пятёрки» образованы путём прибавления ещё одного цилиндра к четырёхцилиндровому двигателю — как кубики в конструкторе. Делают это для того, чтобы с минимальными производственными и конструкторскими затратами получить более мощные моторы. При этом всю начинку, включая поршни, шатуны, клапаны и т. д., можно взять от «четвёрки». Понадобятся иные блок и головка цилиндров и, само собой, коленчатый вал, кривошипы которого должны быть расположены под углом в 72°.

О шестицилиндровых моторах — мечте с точки зрения уравновешенности — мы уже упоминали. А вот в моторах V6, которые вытесняют рядные «шестёрки», ситуация с уравновешенностью такая же, как у «трёшки», то есть не ахти. Поэтому, например, балансирным валом в развале блока цилиндров был оснащён самый первый двигатель V6 фирмы Mercedes-Benz — заслуженный М112 с тремя клапанами на цилиндр. У трёхлитровой «шестёрки» концерна PSA вал находился в одной из головок блока. На других моторах того времени инженеры пытались не усложнять конструкцию и старались свести уровень вибраций к минимуму за счёт усовершенствованной подвески силового агрегата и хитроумного смещённого расположения шатунных шеек коленчатого вала (как, например, на Audi V6).

  • В моторе V6 с углом развала блока 90° сдвоенные кривошипы расположены под углом 120°. А в моторах с развалом 60° каждый шатун приходится устанавливать на своём кривошипе.
  • Для уравновешивания свободного момента от сил второго порядка мотору V6 90° необходим один балансирный вал (показан стрелкой). В двигателе Citroen 3.0 V6 он был установлен в одной из головок блока.

У новейших мерседесовских двигателей V6 угол развала блока сократился до 60°, в результате чего необходимость в балансирном вале отпала.

Добавим сюда ещё одно замечание — в моторах V6 с развалом в 90° не обеспечивается равномерное чередование вспышек в цилиндрах. Возникающая неравномерность хода может компенсироваться за счёт утяжелённого маховика, но лишь отчасти. Вот вам и ещё один источник вибраций...

Двигатели V8 с углом развала цилиндров в 90° и коленвалом, кривошипы которых располагаются в двух взаимно перпендикулярных плоскостях, весьма неплохо уравновешены. В таком моторе можно обеспечить равномерное чередование вспышек, что тоже работает на плавность хода. Остаются неуравновешенными два момента, которые можно полностью утихомирить с помощью двух противовесов на коленчатом валу — на щеках крайних цилиндров. Понимаете, почему американцы раньше других прочувствовали всю прелесть V-образных моторов? Вибрации и тряски в своих автомобилях они очень не любят...

Двигатель V8: и развал блока, и угол между кривошипами — 90°.

Напоследок можно поговорить о схемах необычных. Сначала вспомнить о моторах V4. Таких было немного — европейский Ford образца 60-х годов (который стоял на автомобилях Ford Taunus, Capri и Saab 96) да чудо-двигатель отечественного «Запорожца». Здесь не обошлось без уравновешивающего вала для момента от сил инерции первого порядка. Впрочем, конструкторы вышеупомянутых автомобилей выбирали эту схему из условий компактности и отчасти экономии, а не за хорошую уравновешенность.

  • Ford и ЗАЗ выбрали экзотику: мотор V4, в котором и угол развала блока, и угол между кривошипами составляют 90°.
  • Угол развала цилиндров моторов V2 колеблется от 25° до 90°.

А что насчёт V-образных «десяток»? Как можно видеть, степень уравновешенности таких моторов точно такая же, как и у моторов R5. Впрочем, конструкторы прежних моторов Формулы-1 или монстров Dodge Viper и Dodge RAM, где стоят двигатели V10, о вибрациях думали далеко не в первую очередь.

Как жаль, что Viper и его коллосальный V10 — уже история.

Двигателями V10 отметилась целая череда знаковых машин: BMW M5, Audi S6 и S8, а также RS6 с наддувной «десяткой». Не говоря уже об автомобилях Lamborghini. Наконец, Lexus LFA тоже оснащается двигателем V10.

Ну а прочие схемы легко свести к предыдущим. Например, оппозитная «восьмёрка» (пример применения — гоночные болиды Porsche 917) — это две «четвёрки», работающие на один коленвал. А V-образный и оппозитный двенадцатицилиндровые двигатели можно свести к двум рядным «шестёркам».

VR6, VR5, W12...

Помните, мы упоминали о V-образных моторах с малым углом развала блока — как на Лянчах? Раньше таких схем избегали — уравновесить их сложнее, чем моторы с развалом в 60° или 90°, а выигрыш в компактности тогда ценили не так...

Но теперь ситуация изменилась. Во-первых, повсеместно применяются гидроопоры силового агрегата, которые значительно ослабляют вибрации. Во-вторых, пространство под капотом нынче на вес золота. Ведь кто раньше мог себе представить скромный хэтчбек с 2,8-литровым мотором? А теперь — пожалуйста! Всё началось с Фольксвагена Golf VR6 третьего поколения.

Знаменитый фольксвагеновский двигатель VR6, «V-образно-рядный» мотор (об этом и говорит обозначение VR), стал дальнейшим развитием V-образных двигателей с малым углом развала блока. Цилиндры этого мотора разведены на ещё меньший угол, чем на Лянчах, — всего на 15°. Угол настолько мал, что такой мотор называют ещё «смещённо-рядным». Гениальное решение — «шестёрка» 2.8 компактнее, чем обычный мотор V6, да ещё и имеет одну головку блока! Потом появился двигатель VR5 — это VR6, от которого «отрезали» один цилиндр. После этого мотористы концерна Volkswagen вообще словно с цепи сорвались.

Двигатель VR5 2.3 конструкторы Фольксвагена получили, отняв один цилиндр от мотора VR6. Угол развала компактного блока — 15°, все пять цилиндров укрыты одной головкой блока.

Они придумали суперкомпактный двигатель W12, который дебютировал в 1998 году на концепт-каре W12 Roadster. Это два двигателя VR6, установленные под углом 72° на одном коленвале. Но прежде в серию пошёл мотор W8, которым оснащалась топ-модель седана Passat. Там тоже два мотора VR6, от которых «отрезано» по два цилиндра и которые тоже объединены в одном блоке на одном коленвале. Когда-то в Вольфсбурге подумывали и о восемнадцатицилиндровом двигателе — но в итоге остановились на W16 с четырьмя турбокомпрессорами, который разгоняет Bugatti Veyron до 431 км/ч.

Супермотор W12, показанный на концепте имени себя, приводит в движение представительские модели фирм Audi, Volkswagen и Bentley. На фото хорошо видно шахматное расположение цилиндров пары блоков, объединённых в одной отливке под углом 72°. Длина 420-сильного мотора — всего 51 см, ширина — 70 см.

Почему же таких моторов не было раньше? Взгляните, к примеру, на коленвал двигателя W12 — такое технологу и в страшном сне не приснится! Создателям новых схем должен помогать компьютер. Чтобы просчитать все варианты угла развала блока, расположения шатунных шеек, порядка вспышек в цилиндрах и выбрать самый уравновешенный, без помощи вычислительных мощностей обойтись очень сложно.

Теория и практика

Как видно, при выборе схемы силового агрегата конструкторы ставят во главу угла вовсе не степень уравновешенности. Главное — это удачно вписать в моторный отсек такой двигатель, который будет обладать наилучшим соотношением массы, размеров и мощности. Потом, двигатели сейчас всё чаще строятся по модульному принципу. Говоря упрощённо, на одной поршневой группе можно построить любой мотор — и трёхцилиндровый, и W12. Вслед за Фольксвагеном на модульные конструкции переходит всё больше производителей. Новейшая линейка моторов Mercedes — тому отличное подтверждение.

А вибрации... Во-первых, следует различать теоретическую и действительную уравновешенность двигателя. Если коленчатый вал в сборе с маховиком не отбалансирован, а поршни и шатуны заметно отличаются по массе, то трясти будет даже рядную «шестёрку». А потом, действительная уравновешенность всегда значительно хуже теоретической — по причинам отклонения деталей от номинальных размеров и из-за деформации узлов под нагрузкой. Так что вибрации «прорываются» из двигателя наружу при любой схеме. Поэтому автомобильные инженеры и уделяют такое внимание подвеске силового агрегата. На самом деле конструкция и расположение опор двигателя — не менее важный фактор, чем степень уравновешенности самого мотора...

Материал адаптирован к публикации с разрешения ООО «Газета «Авторевю». Все права на перепечатку принадлежат Авторевю.

Что такое цикл Отто

Рабочий цикл 4-тактного двигателя внутреннего сгорания, с которым работает большинство двигателей современных автомобилей. Впервые он был введен Николаусом Отто в 1876 году. Цикл Отто состоит из следующих процессов: всасывание, сжатие, воспламенение топлива, рабочий и выпускной такты.

Как это работает?

Такт впуска (впускной клапан открыт) : поршень движется вниз из своего верхнего крайнего положения в цилиндре.В результате этого движения топливно-воздушная смесь всасывается в цилиндр открытым впускным (всасывающим) клапаном, а после прохождения поршнем нижнего крайнего положения клапан закрывается и происходит такт сжатия.

Такт сжатия (клапаны закрыты): поршень сжимает воздушно-топливную смесь при движении вверх. При достижении верхнего положения подается искра в двигателе с искровым зажиганием или топливо в двигателе с воспламенением от сжатия, затем включается зажигание и начинается рабочий такт.

Рабочий ход (клапаны закрыты) : Инициация зажигания приводит к тому, что поршень толкается вниз расширяющимся выхлопным газом. Это единственное движение поршня, которое передает движущую силу коленчатому валу через шатун. Когда поршень достигает нижнего положения, происходит последний из четырех тактов.

Такт выпуска (открывает выпускной клапан) : выталкивает выхлопные газы из цилиндра через выпускной клапан в выхлопную систему.После того, как цилиндр достигает своего верхнего конечного положения, выпускной клапан закрывается, а впускной клапан открывается, и цикл начинается заново на такте впуска.

Преимуществом двигателей, работающих по циклу Отто, является простота и безотказность работы всей конструкции, а также высокая мощность. Недостатком, однако, является низкий КПД блока сгорания, колеблющийся лишь в пределах 30-40 процентов. Более высокий КПД достигается за счет двигателей, работающих по циклу Аткинсона или Миллера.

.

Двухтактный до V12

Хотя в автомобильной промышленности в последнее время произошли революционные изменения, новости о скорой смерти двигателей внутреннего сгорания сильно преувеличены. Пока что они по-прежнему ездят на подавляющем большинстве автомобилей по дорогам всего мира, и пройдет еще немало весен, прежде чем мы совсем перестанем слышать их характерное жужжание. Однако у поршневого двигателя внутреннего сгорания много названий — приведем самые популярные решения и виды.

Базовые знания таковы: двигатели внутреннего сгорания – это конструкции, основной задачей которых является преобразование тепловой энергии, образующейся при сгорании топлива, в механическую работу.Мы можем разделить их на три типа: поршневые, турбинные и реактивные двигатели. Первые в основном используются для вождения автомобилей и именно с ними мы разберемся в этом выпуске сериала «От страсти к автомобилизации».

Как следует из названия, ключевым элементом поршневого двигателя является подвижная часть камеры цилиндра, т.е. поршень . Поршни не одни - в зависимости от количества цилиндров их бывает несколько и даже десяток. В основном, чем больше поршневых агрегатов, тем ровнее становится работа двигателя, лучше гасятся вибрации, благороднее звук, у двигателя выше культура работы.В свою очередь, чем больше рабочий объем цилиндров, тем больше динамический потенциал двигателя, но в то же время выше расход топлива.

Критерии классификации поршневых двигателей разнообразны. Наиболее важным, с учетом способа воспламенения топливной смеси и вида подаваемого топлива, является деление на двигатели с искровым зажиганием (бензиновые) и двигатели с воспламенением от сжатия (дизельные).

По рабочему циклу различают четырехтактные и двухтактные двигатели.

Конструктивно ключевое значение имеет также деление с учетом расположения цилиндров – тогда мы выделяем, среди прочего, рядные двигатели , V-образные , двухтактные (т.н. оппозитные).

Учитывая принцип работы рабочего органа, следует отметить двигатель с роторно-поршневым двигателем (двигатель Ванкеля).

Отличаются двигатели

и способом охлаждения - оно может быть косвенным, т.е. с применением жидкости, или прямым, менее популярным сегодня, с применением воздуха.

Удары, или танец поршня

В классическом двигателе внутреннего сгорания поршень совершает возвратно-поступательное движение в результате высокого давления в цилиндре, возникающего при сгорании топливной смеси.

Форма поршня идеально подобрана к форме цилиндра, а его движение горизонтальное в зависимости от положения цилиндра (о котором мы поговорим чуть позже). Поршень, изготовленный из алюминиево-кремниевого сплава, закреплен на шатуне, передающем работу поршня на коленчатый вал, затем на маховик, коробку передач и, наконец, на колеса.

Движение поршня в диапазоне между его максимумами, т.н. мертвые положения называются тактов , а один цикл работы, состоящий из четырех фаз - впуск, сжатие, работа и выпуск - может проходить за четыре или два такта. Отсюда вытекает одно из упомянутых выше делений двигателей на четырех- и двухтактные агрегаты.

Каждая фаза работы двигателя названа в честь соответствующего процесса, происходящего в камере сгорания, то есть в пространстве, ограниченном верхней поверхностью поршня, стенками цилиндра и головкой.

В четырехтактном двигателе поршень движется вниз во время такта впуска, создается разрежение и через открытый впускной клапан всасывается воздушно-топливная смесь или воздух.

Впускной клапан закрывается, и поршень начинает двигаться вверх. Такт сжатия начинается, когда смесь сжимается. Непосредственно перед тем, как поршень достигает верхней мертвой точки и при максимально возможном давлении, смесь воспламеняется (искровое или самопроизвольное), и «взрыв» толкает поршень вниз, инициируя рабочий ход .

Возвратно-поступательное движение поршня преобразуется во вращательное движение коленчатого вала, создающее крутящий момент. Таким образом, мы получаем энергию, которая способна привести в движение нашу машину. Как известно, любое горение и взрыв сопровождается дымом. В нашем случае часть топливной смеси превращается в выхлопные газы, от которых необходимо утилизироваться. Это происходит на такте выпуска - как раз перед тем, как поршень достигает своей нижней мертвой точки, выпускной клапан открывается, и направленный вверх поршень выталкивает выхлоп из цилиндра.Затем поршень движется назад, и цикл повторяется.

Двухтактный двигатель представляет собой такую ​​умную конструкцию, в которой поршень выполняет только два рабочих хода для всех фаз работы двигателя. Это возможно благодаря тому, что процессы всасывания смеси и отвода отработавших газов осуществляются с использованием изменения давления в цилиндре и не требуют отдельных движений поршня, который, кстати, тоже выполняет функции как клапаны.

Цилиндр двухтактный, кроме всасывающего и выпускного канала, имеет еще и проходной канал (межкамерный).Этот канал имеет двойную функцию. На первой фазе такта сжатия топливно-воздушная смесь, предварительно скопившаяся в кривошипном пространстве двигателя, поступает в рабочую полость цилиндра, ее задача промывать камеру и одновременно выталкивать отработавшие газы наружу через вытяжной канал.

Поршень, двигаясь дальше вверх, в конце концов закрывается выпускным клапаном и промежуточной камерой, но открывает нижний всасывающий канал, по которому смесь свежего воздуха и топлива поступает в картер двигателя.Затем происходит зажигание и рабочий такт, во время которого поршень двигателя, двигаясь вниз, раскрывает проходной и выпускной каналы, затем поршень движется вверх, благодаря чему мы снова имеем фазу промывки рабочей камеры и выталкивания выхлопных газов вне.

Первые двухтактные двигатели появились еще до Второй мировой войны, в основном благодаря немецкой компании DKW, но пик их популярности пришелся на 1950-1960-е годы, они были очень популярны, например, в Японии, где с успехом приводили в действие местные кей Кэри .Дольше всего, до 1980-х годов, они использовались в Польше и Восточной Германии. Основным преимуществом таких агрегатов была простота конструкции (отсутствие ГРМ, клапанов, масляного поддона) и, соответственно, простота ремонта.

Эти двигатели также мощнее четырехтактных двигателей того же рабочего объема и намного легче. Однако список недостатков длиннее, к ним относятся в том числе значительно меньшие межремонтные интервалы, меньший КПД из-за необходимости промывки смесью, что увеличивает потери топлива, необходимость добавления масла в топливо для защиты двигателя от заедания, низкая культура труда, уже упомянутый раздражающий запах выхлопных газов .Гвоздем в крышку гроба двухтактных автомобилей стали все более строгие стандарты чистоты выхлопных газов.

Четырехтактные двигатели, хотя и намного сложнее по конструкции, чем двухтактные, дали автопроизводителям больше возможностей для разработки современных приводов.

Искра и самовоспламенение

Бензиновые и дизельные двигатели - это различие упоминается чаще всего. Основное различие между ними заключается в использовании другого топлива, то есть бензина или дизельного топлива, хотя оба они являются производными сырой нефти.Тип топлива - это, конечно, не прихоть конструкторов, а определяется способом воспламенения топливно-воздушной смеси, который у "дизеля" и "бензина" совершенно разный.

Первый бензиновый двигатель с искровым зажиганием, , был разработан в 1876 году немецким изобретателем Николаусом Отто . Общий принцип работы такого двигателя очень прост и в принципе не изменился до сегодняшнего дня: воспламенение сжатой смеси осуществляется за счет искры, возникающей между электродами свечи зажигания электрическим импульсом.За подачу питания отвечает система зажигания.

Двигатели с воспламенением от сжатия (дизельные) Эксплуатация намного сложнее. Так почему же дизельный двигатель , построенный в 1892 году немецким инженером Рудольфом Рудольфом (кстати, на основе более раннего патента, разработанного нашим соотечественником Яном Надровским , ) стал конкурентоспособной конструкцией для бензинового двигателя? Инженер Отто уже обнаружил, что КПД двигателей увеличивается с увеличением степени сжатия.

Смесь топлива и воздуха, которая может воспламениться от искры, мы можем только сжать до определенной, к сожалению, довольно низкой степени, иначе произойдет самовозгорание. Таким образом тратится много энергии. Идея Надровски и Дизеля заключалась в том, чтобы сжимать сам воздух, а когда поршень почти достигал верхней мертвой точки, впрыскивать порцию топлива под очень высоким давлением. Однако это мог быть не бензин, а топливо с гораздо более высокой температурой самовоспламенения, что позволило бы использовать потенциал высокого давления.Вот почему дизельное топливо заливают в дизельный бак. Степень сжатия в дизелях обычно находится в пределах 16-25 (в современных бензиновых двигателях обычно от 9 до 12) и поэтому их называют дизелями.

Дизель

имеет гораздо более высокий КПД, более высокий крутящий момент, меньше топлива и несколько лет назад был практически безотказным (в последнее время, однако, баланс сместился в сторону бензиновых двигателей, т.к. растущие экологические требования сделали дизели более сложными и склонными к серьезным неудачи).Так почему же, несмотря на столько преимуществ, дизельный двигатель не дал искры по сравнению с прошлым? Да потому, что у бензинового двигателя было и есть много преимуществ: легкий запуск вне зависимости от времени года, легкость получения высоких оборотов, большая мощность, линейность крутящего момента, достаточно простая структура системы питания, упомянутая меньшая частота отказов, более высокая работа культура (как известно, дизеля тарахтят характерно и громко).

Инженеры долго пытались найти один из Святых Граалей автомобильной промышленности, то есть сконструировать двигатель, сочетающий в себе положительные черты двух самых популярных двигателей.Хотя результаты до сих пор оказались плохими, дальнейшие попытки все еще предпринимаются, и последней конструкцией этого типа является двигатель Mazda Skyactiv-X . В нем используется инновационная технология SCCI - искровое воспламенение от сжатия. Это работает? Мнения неоднозначны. Skyactiv-X работает очень культурно, мало жжет, но, к сожалению, не дотягивает до обещанной инженерами Mazda динамики.

Рядный, раздвоенный, коробчатый, вращающийся

Одним из важнейших критериев классификации поршневых двигателей является различие между количеством и расположением цилиндров.

Просто взгляните на каталоги производителей - в характеристиках автомобилей есть такие термины, как двигатели R4, R6, V6, V8, некоторые хвастаются боксерами, а среди подержанных автомобилей встречаются и загадочные ванкели. Почему конструкторы двигателей не придерживаются одного проверенного решения, а годами так разнообразно располагают цилиндры, дополнительно жонглируя их количеством?

Сложностью всегда была балансировка поршневого двигателя - возвратно-поступательное движение поршней и такое же движение шатуна в противоположной плоскости порождают значительные, отчетливо ощутимые вибрации.Так или иначе, имманентной чертой каждого четырехтактного двигателя является склонность к неравномерной работе, вызванная различной скоростью хода в зависимости от фазы работы. Отдельным вопросом является соответствующая подгонка мотобайка под модель автомобиля и его предполагаемое использование. К маленькому двигателю городского автомобиля и к мощному спортивному агрегату предъявляются разные требования.

Наиболее часто используемым решением является так называемый рядное расположение, при котором поршни выстраиваются в один ряд и перемещаются вертикально.Трехцилиндровый рядный двигатель тогда маркируется символом R3, четырехцилиндровый R4, шестицилиндровый R6. Последние практически полностью сбалансированы и с точки зрения культуры работы являются одним из лучших решений. К сожалению, применяются они редко, в основном из-за того, что такие двигатели долго и сложно монтируются в современные автомобили. Одним из немногих производителей, которые до сих пор предлагают такие агрегаты, является, например, BMW. Редко можно встретить пятицилиндровые двигатели R5, хотя они тоже очень хорошие моторы — звучат расово, впечатляют производительностью и не очень аварийны.Балансировать их чуть сложнее, чем R4 и R6, сложнее разместить их поперечно в моторном отсеке, а слишком большая вместимость (обычно около 2,5 литров) выливается в повышенный расход топлива, а значит, они занесены в черный список экологов.

На рынке преобладают рядные четырехцилиндровые двигатели, хотя в последнее время их все чаще заменяют трехцилиндровыми, особенно среди городских и малолитражных автомобилей.

Культура работы у R3 относительно невысокая, но они легче соответствуют строгим экологическим нормам, а оснащенные турбокомпрессорами обеспечивают достаточную динамику.А то, что большинство из них скорее всего не долговечны? Ну, раз такое... Сокращение идет почти полным ходом.

К счастью, до сих пор выпускаются автомобили внутреннего сгорания, которые должны поражать производительностью и динамикой, а в таких случаях без большого количества емких цилиндров обойтись сложно. Однако сложно представить мотор с восемью или двенадцатью «гарами» подряд. Именно поэтому был изобретен V-образный двигатель (V) , в котором цилиндры расположены в два ряда под углом 90 или 60 градусов, но приводящие в движение один, общий коленчатый вал.

«Vs» значительно короче «рядов», обычно лучше сбалансированы, также отличаются красивым звучанием. Конечно, ничего не бывает бесплатно — такая конструкция требует как минимум двух головок, сложной системы газораспределения или отдельных выпускных коллекторов для каждого ряда цилиндров.

Существует также гибрид двух двигателей V-Row (VR) . По сути, это V-образный двигатель, но с небольшим углом наклона вилки (от 10,6 до 22 градусов), поэтому ему нужна только одна головка, и его можно разместить поперечно в переднеприводном автомобиле.Это очень редкий двигатель - когда-то его использовали, в том числе, Концерн Volkswagen в моделях Passat, Golf и Corrado.

Интересной конструкцией являются двухтактные двигатели , т.н. боксеры, чаще всего встречающиеся в автомобилях Subaru и Porsche, а ранее также в некоторых автомобилях Alfa, Lancia, Citroën и VW Beetles. В этой системе поршни, работающие попарно, двигаются точно в противоположных направлениях (напоминает бокс, отсюда и название), а плоскости, в которых они двигаются, развернуты на 180 градусов на одном уровне с центрально расположенным коленчатым валом.

Силы инерции поршневой пары «бокса» самоуравновешиваются, благодаря чему кривошипно-поршневая система работает очень равномерно, мало передает вибрации, а сопротивление в каждом диапазоне оборотов мало, что положительно сказывается на динамике . Боксеры жесткие, легкие (алюминиевый фюзеляж, отсутствие дополнительных балансировочных элементов) и занимают мало места, что позволяет устанавливать их как можно ниже в моторном отсеке. Это положительно сказывается на развесовке (по 50% на переднюю и заднюю часть) и устойчивости автомобиля.

Двухтактный двигатель также имеет оригинальный звук. Однако розы без шипов не бывает. Поскольку боксеры плотно заполняют пространство между лонжеронами, почти каждая операция обслуживания очень сложна. Дополнительно дублируются головка, распредвал, прокладки и сальники, а цепи и ремни ГРМ длинные, что требует использования дополнительных роликов.

Есть еще один тип двигателя, совершенно отличный от остальных - двигатель Ванкеля .Он был изобретен немецким конструктором Феликсом Ванкелем еще в 1929 году, но первый прототип был создан только 28 лет спустя.

Принцип Ванкеля гениален в своей простоте. В этом двигателе одиночный поршень (ротор) в форме треугольника Рело (со скругленными сторонами) не совершает возвратно-поступательного или боксёрского движения, а вращается в едином эллиптическом цилиндре под действием давления газов, образующихся при сгорании топливовоздушной смеси.

Наружная поверхность ротора имеет углубление, образующее со стенками цилиндра камеру сгорания. Ротор имеет зубчатое зацепление с внутренней стороны, взаимодействующее с зубчатым колесом, постоянно закрепленным в корпусе. За один оборот вала двигатель совершает целых четыре такта работы - всасывание, сжатие, рабочий и выпускной. Все эти процессы происходят в камерах, образующихся при вращении ротора. При каждом обороте ротора эксцентриковый вал поворачивается три раза. Такая конструкция позволяет двигателю развивать очень высокие обороты (9-10 тысяч об/мин).об/мин), при этом отличается высоким механическим КПД.

У нас есть и другие преимущества - двигатели Ванкеля состоят из минимального количества компонентов, очень легкие, работают тихо, потому что не имеют шумных клапанов, и в то же время производят абсолютно безошибочный спортивный звук. Они идеально сбалансированы и позволяют достичь беспрецедентного в других конструкциях уровня культуры труда. К сожалению, у них есть и серьезные недостатки: они требуют разветвленной системы охлаждения, присущей им конструктивной особенностью является «забор» масла, проблема заключается в эффективном уплотнении между поршнем и цилиндром, они быстро изнашиваются и через каждые ок.100 тысяч км требуют капитального ремонта. Они также очень прожорливы к топливу.

Wankle использовался Mazda дольше всех и с наибольшей решимостью (включая модели Cosmo, RX-7, RX-8). В прошлом их также можно было встретить в автомобилях NSU (Spider, Ro 80), а также в знаменитом прототипе Mercedes C-111.

Воздух и вода — два элемента охлаждения

Последняя разделительная черта, о которой я хотел упомянуть, это то, как они охлаждаются.

КПД автомобильных двигателей не очень впечатляет - максимум он достигает ок.45%, и обычно остается намного ниже. Что происходит с остальной энергией, или проще говоря, с произведенным теплом? Частично он улетучивается с выхлопными газами, но примерно треть выбрасывается через систему охлаждения. Чаще всего используются две системы - непрямая , т.е. с использованием жидкости , или прямая , в которой ключевую роль играет воздух . Задача обеих систем — не только охлаждение, но и поддержание максимально оптимальной рабочей температуры двигателя.

В прямой системе воздух обдувает горячий двигатель, а именно цилиндры и головку, понижая его температуру. Так раньше охлаждались двигатели Porsche 911, VW Beetle и Fiat 126p. Этот тип системы довольно прост (без жидких компонентов, таких как радиатор или водяной насос) и достаточно надежен.

Необходимо наличие достаточно плотного оребрения оголовка, обычно также используются воздухозаборники в кузове автомобиля для направления потока воздуха к наиболее нагретым элементам, часто устанавливаются дополнительные нагнетатели.Прямая система заставляет двигатель быстро нагреваться, а значит - медленнее изнашиваются некоторые его узлы; он также практически не требует технического обслуживания. Однако охлаждение не такое эффективное, как водяное, температуры циркуляции выше, что способствует детонации, и колебания температуры больше. Чтобы этого не произошло, степень сжатия поддерживается низкой, в результате чего эффективность двигателей становится ограниченной. Кроме того, «воздушные» двигатели шумные.

На сегодняшний день наиболее распространенным решением является непрямая система, названная так потому, что жидкость выступает посредником между теплоотводом двигателя и охлаждающим его воздухом в радиаторе (естественно или дополнительно нагнетаемым вентилятором).

В системе непрямого охлаждения используются два контура: малый и большой, с большим количеством компонентов. Перечислим только самые важные: радиатор, термостат, вентилятор, датчики температуры, водяной насос, расширительный бачок, отопитель. Дополнительно в блоке двигателя возле наиболее нагреваемых деталей имеются полые каналы, по которым циркулирует охлаждающая жидкость. Двигатели с жидкостным охлаждением более эффективны, чем двигатели с воздушным охлаждением, и они тише. Однако найти неисправности в них проще, из-за сложности системы и утечек охлаждающей жидкости.

Кшиштоф Михал Юзвяк

.

Четырехтактный двигатель - конструкция, эксплуатация

DMP и GMP, т.е. устройство и работа четырехтактного двигателя

И бензиновые, и дизельные агрегаты используют четыре рабочих такта. Чтобы хорошо понять этот процесс, необходимо расшифровать приведенные выше аббревиатуры, т.е. DMP и GMP. Во-первых, это нижняя мертвая точка поршня. Он совершает возвратно-поступательные движения и при маркировке максимального расстояния от головы маркируется DMP. С другой стороны, ВМТ для 4-тактного двигателя и любого другого определяет верхнюю мертвую точку поршня. Это точка, в которой элемент достигает своего верхнего положения и кратчайшего расстояния между низом и головкой. Эти точки имеют решающее значение для начала и окончания определенных рабочих ходов. Стоит объяснить их один за другим.

4-тактный двигатель - дроссель

Первая из указанных стадий работы четырехтактного двигателя начинается при возвращении поршня из ВМТ в нижнюю часть камеры сгорания. Затем открывается впускной клапан, через который топливно-воздушная смесь (или только воздух в случае дизельного топлива) поступает в цилиндр. Такт всасывания продолжается до тех пор, пока поршень не достигнет НМТ. За счет быстрого возвратно-поступательного движения создается давление, что вызывает подсос вышеназванного смеси.

4-тактный двигатель - Компрессия

Появляется сразу после кормления грудью. Поршень от НМТ находится на пути к ВМТ и при обратном ходе впускные клапаны закрыты. Предотвращает попадание воздушно-топливной смеси обратно во впускную систему.Под давлением поршня в четырехтактном двигателе смесь сильно сжимается на 90% от своего первоначального объема. Воспламенение происходит до достижения минимального значения объема. На практике это происходит при 5 градусах поворота коленчатого вала перед ВМТ. Цель этой процедуры состоит в том, чтобы сжечь смесь, как только поршень превысит ВМТ.

4-тактный двигатель - эксплуатация

При зажигании поршень отталкивается назад к коленчатому валу с силой почти 5 тонн. Все клапаны находятся в закрытом положении, и благодаря зажиганию и генерируемой энергии можно вращать кривошипно-поршневую систему и приводить в движение колеса автомобиля. Еще до достижения DMP рабочий цикл завершается.

4-тактный двигатель - Выхлоп

В 4-тактных двигателях такт выпуска выполняется до того, как поршень начинает двигаться назад к ВМТ. Нерасширившиеся газы выпускаются через выпускные клапаны и покидают камеру сгорания.Их остатки удаляются при возврате в ВМТ и при ее достижении повторяется 4-тактный цикл.

Двигатель внутреннего сгорания четырехтактный бензиновый и дизельный

Как вы уже знаете, 4-тактный двигатель аналогичен искровому зажиганию и воспламенению от сжатия. Однако на такте впуска в камеру сгорания поступает только воздух. При сжатии в цилиндр нагнетается воздух, который из-за огромного повышения температуры воспламеняется сжатым воздухом.Свеча зажигания не задействована, так как дизельное топливо не воспламеняется от искры. Как видите, четырехтактный двигатель может иметь несколько иную конструкцию. Сегодня на рынке доступны 4-тактные двигатели с управляемым опережением зажигания, регулируемым опережением впрыска, форкамерами и многократным впрыском бедной и богатой смесей за один рабочий цикл. Все, чтобы сделать четырехтактные двигатели еще мощнее и экологичнее.В будущем обязательно появятся еще более совершенные конструкции, предоставляющие беспрецедентные возможности.

.

Принцип работы четырехтактного двигателя - SAMOLOTY.PL

Этот двигатель имеет клапаны в головке блока цилиндров: впускной, через который смесь (или воздух) поступает в цилиндр, и выпускной, через который выхлопные газы выходят из цилиндра. Есть 4 рабочих цикла:

  • дроссель
  • сжатие
  • работа
  • выхлоп


Двигатель работает следующим образом:

I ход - ДРОССЕЛЬ
Всасывающий клапан открывается, поршень движется вниз к JPA (внутренняя точка возврата).Он создает разрежение, благодаря которому топливно-воздушная смесь всасывается из карбюратора (или системы впрыска и воздуховодов) из впускного канала за закрывающим его впускным клапаном. Он проходит внутри полости цилиндра, между днищем поршня и головкой, образуя полость цилиндра (равную полной емкости). Это делается в атмосферных двигателях, в то время как в двигателе с наддувом смесь нагнетается под давлением. Как только поршень превышает BPA, всасывающий клапан закрывается.

Такт II - СЖАТИЕ
Поршень движется вверх по цилиндру и сжимает воздушно-топливную смесь. Сжатие происходит под огромным давлением в объеме камеры сгорания. Но до того, как давление достигнет максимального значения, примерно за 5 градусов поворота коленчатого вала до того, как поршень достигнет Внешней точки возврата (ЗТП), происходит воспламенение (так называемый опережение зажигания). Цель состоит в том, чтобы сжечь всю смесь при момент, когда поршень уже превысил ZMP и может быть оттеснен расширяющимися выхлопными газами для начала рабочего такта.

Ход III - РАБОТА
Поршень отталкивается назад - с невообразимой силой, так как внутри камеры сгорания после воспламенения создается давление, соответствующее давлению в 5 тонн на поршень! И такие силы должны передаваться от днища поршня через шатун на коленчатый вал. После этого одного рабочего такта двигатель должен набрать достаточный импульс коленчатого вала, чтобы выполнить оставшиеся три такта. Поэтому легко понять, почему двигатели работают более плавно, чем больше у них цилиндров.Образовавшаяся кинетическая энергия запасается в маховике (и/или других системах выравнивания и уравновешивания работы двигателя).


Такт IV - ВЫПУСК
Еще до того, как поршень достигнет HPP, открывается выпускной клапан, и еще не полностью расширенный выхлопной газ может выйти из цилиндра в сторону выхлопной системы. Двигаясь вверх, поршень выталкивает из цилиндра остальные газы, а при превышении запускает цикл сначала.
В конце концов 4.ходов коленчатый вал сделал два полных оборота.
На приведенной ниже диаграмме показан полный рабочий цикл 4-тактного двигателя.

Принцип четырехтактного двигателя

Мачей Луговский

.

Четырехтактный двигатель с искровым зажиганием | Направляющие

Дата публикации: 31.01.2017

В 4-тактных двигателях текущей конструкции 1 цикл двигателя всегда выполняется за два оборота коленчатого вала (720О OWK), независимо от числа цилиндров. За два оборота коленчатого вала в каждом цилиндре двигателя выполняется только один рабочий такт.

В современных конструкциях систем управления двигателем в течение одного цикла двигателя время впрыска остается одинаковым для всех форсунок одного блока цилиндров, также в так называемомсистемы последовательного впрыска. Однако вскоре мы перейдем на индивидуальную настройку времени впрыска для отдельных цилиндров.

Двигатель разбивается на блоки цилиндров
Двигатели с бортовой диагностикой OBDII/EOBD разбиваются на блоки цилиндров, сокращенно «блоки». Эта поломка — это не поломка механической конструкции двигателя, а сбой в программе управления двигателем. Двигатели с числом цилиндров до 4 обычно имеют один блок цилиндров.

Двигатели с 6 и более цилиндрами обычно делятся на 2 или более блоков цилиндров. Например, двигатель, разделенный на два блока цилиндров, дает два отдельных двигателя с точки зрения управления. Давайте познакомимся с основными преимуществами разделения двигателя на блоки цилиндров. Одно и то же значение времени впрыска (топливная доза), рассчитанное контроллером, например, для 3 цилиндров на основе сигнала кислородного датчика, который измеряет содержание кислорода в отработавших газах, смешанных из 3 цилиндров, гарантирует, что каждый из 3 цилиндров снабжается смесью состава, более близкого к требуемому, чем в двигателе с 6 цилиндрами, для которого контроллер рассчитывает время впрыска на основании сигнала кислородного датчика, измеряющего содержание кислорода в отработавших газах, смешанных с 6 цилиндрами.

Чем ближе состав исходной смеси к требуемому, тем больше:
• эффективность каталитического нейтрализатора больше, поэтому выхлопные газы чище;
• расход топлива ниже.

Кроме того, система управления опережением зажигания, взаимодействующая с двумя или более датчиками детонации, каждый из которых "слушает" звуки сгорания, например, в 3 цилиндрах, работает более точно, чем система управления углом опережения зажигания, взаимодействующая только с одним датчиком детонации, который «Слушает» звуки процесса горения, например.6 цилиндров. Это повышает точность определения угла опережения зажигания в системах, оснащенных датчиком детонации.

Нумерация блоков цилиндров
Если двигатель не разделен на блоки цилиндров, все его цилиндры относятся к блоку цилиндров 1. Если двигатель разделен на два или более блоков цилиндров, номер 1 обозначает блок цилиндров, к которому относится цилиндр принадлежит № 1 (см. рис. 2–5). Блок цилиндров также называют «банком», но он является частью английского термина «ряд цилиндров», который, например,в программном обеспечении диагностического тестера оно не было переведено, поскольку переводчик не знал, что оно означает.

Текст взят из Технического приложения к НОВОСТЯМ Inter Cars SA № 40 / сентябрь 2011 г. «Выбор времени впрыска бензина и газа»

.90 000 проверенных выбросов CO2 на протяжении всего жизненного цикла автомобилей. Электричество против водородных автомобилей

Глобальное потепление требует ответных мер по сокращению выбросов углерода. В 2015 году почти 190 стран заключили Парижское соглашение. После обновления говорится, что к 2030 году свяжет страны как минимум на 55 процентов. сократит выбросы CO2 на 90 004 по сравнению с уровнем 1990 г. Это означает, что мы стремимся к снижению во всех областях, включая автомобилестроение.Как достичь такой цели?

Вы заставите всех использовать электрика. Мы знаем сумму

субсидий

Наконец-то! После прошлогоднего пилотного проекта субсидии электрикам вступают в следующую фазу. С 12 июля 2021 года можно подавать заявки на финансирование закупки...

Чтобы проверить это, специалисты ICCT (Международный совет по чистому транспорту) проанализировали выбросы углекислого газа на протяжении всего жизненного цикла автомобилей с учетом выбросов, связанных с их производством, эксплуатацией, а также получением топлива или энергии, необходимых для вождения.Как нетрудно было предсказать, хуже всего в этом отношении обстоят дела у автомобилей с традиционным приводом.

Для Европы в 2021 году общие выбросы, рассчитанные в этом случае, составляют менее 250 г CO2/км . В 2031 г. при сохранении Парижского соглашения она будет лишь немногим меньше — около 240 г СО2/км.

Полностью электрические автомобили сегодня выбрасывают около 80 г CO2/км - при условии, что энергия получена способом, соответствующим среднему европейскому энергетическому балансу.Ожидается, что в 2030 году этот показатель составит около 65 г CO2/км. У нас совершенно другой результат, , когда электричество для движения транспортного средства получается из возобновляемых источников энергии. Тогда выбросы для компактного автомобиля среднего размера уже меньше 50 г CO2/км .

Получается, что производство аккумулятора для электромобиля и производство водородного бака приводят к одинаковым выбросам CO2 в атмосферу

(МЦКТ)

А как насчет автомобилей на водородных топливных элементах? Людям, которые не могут зарядить машину дома или на работе, может быть удобнее пользоваться.Однако воздействие на окружающую среду резко различается в зависимости от того, как производится водород.

При производстве риформингом метана (серый водород) общие выбросы CO2 составят 180-200 г/км . Если водород получают исключительно из возобновляемых источников энергии, выбросы составляют около 55 г CO2/км . Таким образом, это почти сравнимо с выбросами электромобиля, работающего на электричестве, полученном из возобновляемых источников энергии.

Водород как топливо будущего.После восторженного приема всплывает

вопросительных знаков.

Уже продают машину новой эры, хотя в Польше ее даже заправить нельзя. Кажется, Toyota с водородным двигателем дает нам движение…

Расчеты, опубликованные ICCT, показывают, что обычные автомобили больше не могут обещать каких-либо значительных улучшений. К автомобилям с альтернативным приводом также следует подходить с некоторым запасом . Если бы водород получали неэкологичными методами, то прибыль от использования автомобилей на топливных элементах была бы чисто локальной и выражалась бы в отсутствии загрязнения воздуха, например, в центре города.Однако глобально мы многого не выиграем.

Следуйте за нами в Новостях Google:

.90 000 Daimler может полностью отказаться от двигателей внутреннего сгорания в начале следующего десятилетия • ЭЛЕКТРОМОБИЛИ - www.elektrowoz.pl

Интересные сообщения немецкого Handelsblatt. Daimler открыто заявил, что хочет избавиться от двигателей внутреннего сгорания к 2039 году. Однако компания якобы разрабатывает сценарии, согласно которым Mercedes не будет продавать автомобили с ДВС даже на 5-8 лет раньше.

Мерседес почти исключительно электрический в следующем десятилетии?

Конец двигателей внутреннего сгорания с 2031 по 2034 год будет означать, что теперь Mercedes придется готовиться к крупномасштабному электрическому наступлению, чтобы предложить покупателям ряд чисто электрических моделей различных размеров и вариантов кузова в начале следующего десятилетия. .

Символом революции станет новое поколение Mercedes S-Class, которое должно быть представлено в 2028 году. В то время как текущий S-класс доступен только в варианте с двигателем внутреннего сгорания, в качестве классического двигателя внутреннего сгорания или в виде подключаемого гибрида, следующее поколение будет предлагаться только с электроприводом. Другое дело, что непонятно, как в этом контексте будет позиционироваться линейка Mercedes EQS.

Mercedes EQS в маске за рулем (с) Daimler

Генеральный директор Daimler Ола Келлениус считает, что к 2030 году маржа электромобилей может сравняться с маржой автомобилей внутреннего сгорания.И когда границы выровняются, не будет причин придерживаться моделей горения (источник). Однако, отмечает Handelsblatt, давление на электромобили могут снизить профсоюзы, которые до сих пор не простили компании перенос некоторых производственных линий из Штутгарта в Польшу.

План по отделению от компании подразделения, занимающегося грузовыми автомобилями, должен соответствовать более быстрому, чем было объявлено, отказу от двигателей внутреннего сгорания. Тяжелый транспорт будет дольше полагаться на дизельное топливо или природный газ, в то время как сегменты легковых автомобилей и фургонов смогут сосредоточиться на чисто электрических приводах.

Последней новой серийно выпускаемой платформой с поддержкой двигателей внутреннего сгорания станет платформа MMA для компактных автомобилей (источник)

Начальное фото: иллюстративное, Mercedes EQS и Ола Каеллениус (c) Daimler

Объявления, которые могут вас заинтересовать:

Читательский рейтинг

[Всего: 2 голоса, среднее: 5].

Смотрите также