Ход поршня это


Цилиндро-поршневая группа ЕВРО-2, 3, газовый (ход поршня 130мм)

Код ДЗЧ:
740.50-1000128-02

Комплект в сборе

Ремонтный комплект для двигателей КАМАЗ экологического класса ЕВРО- 2 с увеличенным ходом поршня 130 мм. Детали изготовлены по основному технологическому процессу, исключающему ремонтные размеры. Точность обработки исключает необходимость селективного подбора деталей. Обеспечивает возможность выбора оптимального надпоршневого зазора за счет подрезки днища поршня.. Работоспособность подтверждена длительными моторными испытаниями.

Код ДЗЧ:
740.61-1004015

Поршень

Изготовлен из специального алюминиевого сплава повышенной теплостойкости, канавка верхнего компрессионного кольца упрочнена вставкой из высоколегированного чугуна, боковая поверхность имеет оригинальную овально бочкообразную форму. Расстояние от оси отверстия поршневого пальца до днища максимальное, позволяет проводить подрезку и обеспечивать оптимальный зазор с головкой блока цилиндров. Для исключения контакта с головкой цилиндров высота поршня уменьшена на 5 мм Расстояние от днища до нижнего торца канавки верхнего кольца уменьшено до 17 мм. Камера сгорания тороидальная с вытеснителем, увеличенного диаметра, смещена в сторону от выборок под клапаны на 5 мм. В нижней части, на юбке выполнена выборка для исключения контакта с форсункой охлаждения и с противоположной стороны выборка для исключения возможного контакта с ребром блока цилиндров. Изготовлен на высокоточном оборудовании фирмы <ХЮЛЛЕР> Германия.

Код ДЗЧ:
740.51-1002021

Гильза цилиндра

Изготовлена из серого специального чугуна, легированного молибденом, фосфором и бором, не подвергается термообработке. На рабочую поверхность нанесена сетка чередующихся рисок и впадин определенной глубины с подобранным углом наклона, обеспечивающая оптимальную маслоёмкость для приработки поршневых колец. Финишная обработка выполнена на высокоточном оборудовании фирмы <НАГЕЛЬ> Германия, что позволяет отказаться от селективного подбора с поршнем по диаметру. Высота гильзы на 3 мм меньше высоты гильзы примененной на двигателях с ходом поршня 120 мм. Это необходимо для исключения контакта с шатуном. Унифицирована для применения на всех моделях двигателей КАМАЗ размерностью 120х130.

Код ДЗЧ:
740.1002024

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров по нижнему направляющему поясу гильзы.

Код ДЗЧ:
740.1002031

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров под опорным буртом гильзы.

7406.1004020

Палец

Рабочая поверхность упрочнена цементацией, объёмная закалка обеспечивает улучшенную структуру сердцевины, высокую усталостную прочность и высокую стабильность формы и размеров. Современные технологии обработки обеспечивают изготовление диаметра наружной поверхности с точностью в несколько микрон при очень высокой чистоте. Отличается уменьшенным диаметром отверстия, что вызвано необходимостью повысить жесткость пальца.

Код ДЗЧ:
740.1004022

Кольцо стопорное

Стальные гарантируют надежную фиксацию пальца в поршне.

К005260760

Кольцо поршневое компрессионное верхнее

Производства фирмы <Федерал Могул> Германия. Изготовлено из высокопрочного чугуна, термоулучшенное, что гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде двухсторонней трапеции с внутренней выборкой на верхнем торце. На рабочую поверхность нанесено молибденовое покрытие с улучшенными характеристиками, специальная притирка обеспечивает ей бочкообразную форму со смещением к нижнему торцу, что улучшает приработку и повышает ресурс работы гарантирует 100% прилегание к гильзе цилиндров.

К005388691

Кольцо поршневое компрессионное нижнее

Производства фирмы <Федерал Могул> Германия Изготовлено из серого специального чугуна, гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде односторонней трапеции. На рабочую поверхность нанесено хромовое покрытие, форма рабочей поверхности <минутная> с уклоном к нижнему торцу и рабочим пояском примыкающим к нему, это улучшает маслосъёмные свойства кольца и позволяет наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза.. гарантирует 100% прилегание к гильзе цилиндров.

К035423690

Кольцо поршневое маслосъемное

Производства фирмы <Федерал Могул> Германия Коробчатого типа, уменьшенной до 4 мм высоты, что наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза изготовлено из серого специального чугуна с шлифованным пружинным расширителем, имеющим переменный шаг по периметру кольца. Расширитель с повышенной теплостойкостью. Специальная термообработка расширителя гарантирует стабильную оптимальную упругость на протяжении всего ресурса работы. На рабочие пояски нанесено износостойкое хромовое покрытие. Высокая точность обработки кольца обеспечивает выполнение требований по расходу масла на угар.

Код ДЗЧ:
740.50-1000128-03

Комплект в сборе

Ремонтный комплект для двигателей КАМАЗ экологического класса ЕВРО- 2 с увеличенным ходом поршня 130 мм. Детали изготовлены по основному технологическому процессу, исключающему ремонтные размеры. Точность обработки исключает необходимость селективного подбора деталей. Обеспечивает возможность выбора оптимального надпоршневого зазора за счет подрезки днища поршня. Работоспособность подтверждена длительными моторными испытаниями.

Код ДЗЧ:
740.61-1004015

Поршень

Изготовлен из специального алюминиевого сплава повышенной теплостойкости, канавка верхнего компрессионного кольца упрочнена вставкой из высоколегированного чугуна, боковая поверхность имеет оригинальную овально бочкообразную форму. Расстояние от оси отверстия поршневого пальца до днища максимальное, позволяет проводить подрезку и обеспечивать оптимальный зазор с головкой блока цилиндров. Для исключения контакта с головкой цилиндров высота поршня уменьшена на 5 мм Расстояние от днища до нижнего торца канавки верхнего кольца уменьшено до 17 мм. Камера сгорания тороидальная с вытеснителем, увеличенного диаметра, смещена в сторону от выборок под клапаны на 5 мм. В нижней части, на юбке выполнена выборка для исключения контакта с форсункой охлаждения и с противоположной стороны выборка для исключения возможного контакта с ребром ьлока цилиндров. Изготовлен на высокоточном оборудовании фирмы <ХЮЛЛЕР> Германия.

Код ДЗЧ:
740.51-1002021

Гильза цилиндра

Изготовлена из серого специального чугуна, легированного молибденом, фосфором и бором, не подвергается термообработке. На рабочую поверхность нанесена сетка чередующихся рисок и впадин определенной глубины с подобранным углом наклона, обеспечивающая оптимальную маслоёмкость для приработки поршневых колец. Финишная обработка выполнена на высокоточном оборудовании фирмы <НАГЕЛЬ> Германия, что позволяет отказаться от селективного подбора с поршнем по диаметру. Высота гильзы на 3 мм меньше высоты гильзы примененной на двигателях с ходом поршня 120 мм. Это необходимо для исключения контакта с шатуном. Унифицирована для применения на всех моделях двигателей КАМАЗ размерностью 120х130.

Код ДЗЧ:
740.1002024

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров по нижнему направляющему поясу гильзы.
Код ДЗЧ:
740.1002031

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров под опорным буртом гильзы.
7406.1004020

Палец

Рабочая поверхность упрочнена цементацией, объёмная закалка обеспечивает улучшенную структуру сердцевины, высокую усталостную прочность и высокую стабильность формы и размеров. Современные технологии обработки обеспечивают изготовление диаметра наружной поверхности с точностью в несколько микрон при очень высокой чистоте. Отличается уменьшенным диаметром отверстия, что вызвано необходимостью повысить жесткость пальца.

Код ДЗЧ:
740.1004022

Кольцо стопорное

Стальные гарантируют надежную фиксацию пальца в поршне.
26-120-35-10

Кольцо поршневое компрессионное верхнее

Производства фирмы <Бузулук> Чехия. Изготовлено из высокопрочного чугуна, термоулучшенное, что гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде двухсторонней трапеции с внутренней выборкой на верхнем торце. На рабочую поверхность нанесено молибденовое покрытие с улучшенными характеристиками, специальная притирка обеспечивает ей бочкообразную форму со смещением к нижнему торцу, что улучшает приработку и повышает ресурс работы гарантирует 100% прилегание к гильзе цилиндров.

Код ДЗЧ:
740.13-1004032

Кольцо поршневое компрессионное нижнее

Изготовлено из серого специального чугуна, гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде односторонней трапеции. На рабочую поверхность нанесено хромовое покрытие, форма рабочей поверхности <минутная> с уклоном к нижнему торцу и рабочим пояском примыкающим к нему, это улучшает маслосъёмные свойства кольца и позволяет наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза.. гарантирует 100% прилегание к гильзе цилиндров.

Код ДЗЧ:
740.13-1004034-01

Кольцо поршневое маслосъемное

Коробчатого типа, уменьшенной до 4 мм высоты, что наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза изготовлено из серого специального чугуна с шлифованным пружинным расширителем, имеющим переменный шаг по периметру кольца производства фирмы <ПРИМА> Польша. Расширитель с повышенной теплостойкостью. Специальная термообработка расширителя гарантирует стабильную оптимальную упругость на протяжении всего ресурса работы. На рабочие пояски нанесено износостойкое хромовое покрытие. Высокая точность обработки кольца обеспечивает выполнение требований по расходу масла на угар.

Код ДЗЧ:
740.50-1000128-05

Комплект в сборе

Ремонтный комплект для двигателей КАМАЗ экологического класса ЕВРО- 2 с увеличенным ходом поршня 130 мм. Детали изготовлены по основному технологическому процессу, исключающему ремонтные размеры. Точность обработки исключает необходимость селективного подбора деталей. Обеспечивает возможность установки в блок цилиндров без контроля надпоршневого зазора. Работоспособность подтверждена моторными испытаниями.

Код ДЗЧ:
740.61-1004015

Поршень

Изготовлен из специального алюминиевого сплава повышенной теплостойкости, канавка верхнего компрессионного кольца упрочнена вставкой из высоколегированного чугуна, боковая поверхность имеет оригинальную овально бочкообразную форму. Расстояние от оси отверстия поршневого пальца до днища минимальное, позволяет не контролировать зазор с головкой блока цилиндров. Для исключения контакта с головкой цилиндров высота поршня уменьшена на 5 мм Расстояние от днища до нижнего торца канавки верхнего кольца уменьшено до 17 мм. Камера сгорания тороидальная с вытеснителем, увеличенного диаметра, смещена в сторону от выборок под клапаны на 5 мм. В нижней части, на юбке выполнена выборка для исключения контакта с форсункой охлаждения и с противоположной стороны выборка для исключения возможного контакта с ребром ьлока цилиндров. Изготовлен на высокоточном оборудовании фирмы <ХЮЛЛЕР> Германия.

Код ДЗЧ:
740.51-1002021

Гильза цилиндра

Изготовлена из серого специального чугуна, легированного молибденом, фосфором и бором, не подвергается термообработке. На рабочую поверхность нанесена сетка чередующихся рисок и впадин определенной глубины с подобранным углом наклона, обеспечивающая оптимальную маслоёмкость для приработки поршневых колец. Финишная обработка выполнена на высокоточном оборудовании фирмы <НАГЕЛЬ> Германия, что позволяет отказаться от селективного подбора с поршнем по диаметру. Высота гильзы на 3 мм меньше высоты гильзы примененной на двигателях с ходом поршня 120 мм. Это необходимо для исключения контакта с шатуном. Унифицирована для применения на всех моделях двигателей КАМАЗ размерностью 120х130.

Код ДЗЧ:
740.1002024

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров по нижнему направляющему поясу гильзы.
Код ДЗЧ:
740.1002031

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров под опорным буртом гильзы.
7406.1004020

Палец

Рабочая поверхность упрочнена цементацией, объёмная закалка обеспечивает улучшенную структуру сердцевины, высокую усталостную прочность и высокую стабильность формы и размеров. Современные технологии обработки обеспечивают изготовление диаметра наружной поверхности с точностью в несколько микрон при очень высокой чистоте. Отличается уменьшенным диаметром отверстия, что вызвано необходимостью повысить жесткость пальца.

Код ДЗЧ:
740.1004022

Кольцо стопорное

Стальные гарантируют надежную фиксацию пальца в поршне.
26-120-35-10

Кольцо поршневое компрессионное верхнее

Производства фирмы <Бузулук> Чехия. Изготовлено из высокопрочного чугуна, термоулучшенное, что гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде двухсторонней трапеции с внутренней выборкой на верхнем торце. На рабочую поверхность нанесено молибденовое покрытие с улучшенными характеристиками, специальная притирка обеспечивает ей бочкообразную форму со смещением к нижнему торцу, что улучшает приработку и повышает ресурс работы гарантирует 100% прилегание к гильзе цилиндров.

Код ДЗЧ:
740.13-1004032

Кольцо поршневое компрессионное нижнее

Изготовлено из серого специального чугуна, гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде односторонней трапеции. На рабочую поверхность нанесено хромовое покрытие, форма рабочей поверхности <минутная> с уклоном к нижнему торцу и рабочим пояском примыкающим к нему, это улучшает маслосъёмные свойства кольца и позволяет наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза. гарантирует 100% прилегание к гильзе цилиндров.

Код ДЗЧ:
740.13-1004034-01

Кольцо поршневое маслосъемное

Коробчатого типа, уменьшенной до 4 мм высоты, что наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза изготовлено из серого специального чугуна с шлифованным пружинным расширителем, имеющим переменный шаг по периметру кольца производства фирмы <ПРИМА> Польша. Расширитель с повышенной теплостойкостью. Специальная термообработка расширителя гарантирует стабильную оптимальную упругость на протяжении всего ресурса работы. На рабочие пояски нанесено износостойкое хромовое покрытие. Высокая точность обработки кольца обеспечивает выполнение требований по расходу масла на угар.

Код ДЗЧ:
740.60-1000128

Комплект в сборе

Ремонтный комплект для двигателей КАМАЗ экологического класса ЕВРО- 3 с увеличенным ходом поршня 130 мм. Детали изготовлены по основному технологическому процессу, исключающему ремонтные размеры. Точность обработки исключает необходимость селективного подбора деталей. Обеспечивает возможность выбора оптимального надпоршневого зазора за счет подрезки днища поршня. Расход масла на угар в сравнении с двигателями экологического класса НВРО-2 снижен в 2 раза. Работоспособность подтверждена длительными моторными испытаниями.

Код ДЗЧ:
740.61-1004015

Поршень

Изготовлен из специального алюминиевого сплава повышенной теплостойкости, канавка верхнего компрессионного кольца упрочнена вставкой из высоколегированного чугуна, боковая поверхность имеет оригинальную овально бочкообразную форму. Расстояние от оси отверстия поршневого пальца до днища максимальное, позволяет проводить подрезку и обеспечивать оптимальный зазор с головкой блока цилиндров. Для исключения контакта с головкой цилиндров высота поршня уменьшена на 5 мм Расстояние от днища до нижнего торца канавки верхнего кольца уменьшено до 17 мм. Камера сгорания тороидальная с вытеснителем, увеличенного диаметра, смещена в сторону от выборок под клапаны на 5 мм. В нижней части, на юбке выполнена выборка для исключения контакта с форсункой охлаждения и с противоположной стороны выборка для исключения возможного контакта с ребром ьлока цилиндров. Изготовлен на высокоточном оборудовании фирмы <ХЮЛЛЕР> Германия.

Код ДЗЧ:
740.51-1002021

Гильза цилиндра

Изготовлена из серого специального чугуна, легированного молибденом, фосфором и бором, не подвергается термообработке. На рабочую поверхность нанесена сетка чередующихся рисок и впадин определенной глубины с подобранным углом наклона, обеспечивающая оптимальную маслоёмкость для приработки поршневых колец. Финишная обработка выполнена на высокоточном оборудовании фирмы <НАГЕЛЬ> Германия, что позволяет отказаться от селективного подбора с поршнем по диаметру. Высота гильзы на 3 мм меньше высоты гильзы примененной на двигателях с ходом поршня 120 мм. Это необходимо для исключения контакта с шатуном. Унифицирована для применения на всех моделях двигателей КАМАЗ размерностью 120х130.

Код ДЗЧ:
740.1002024

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров по нижнему направляющему поясу гильзы.
Код ДЗЧ:
740.1002031

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров под опорным буртом гильзы.
7406.1004020

Палец

Рабочая поверхность упрочнена цементацией, объёмная закалка обеспечивает улучшенную структуру сердцевины, высокую усталостную прочность и высокую стабильность формы и размеров. Современные технологии обработки обеспечивают изготовление диаметра наружной поверхности с точностью в несколько микрон при очень высокой чистоте. Отличается уменьшенным диаметром отверстия, что вызвано необходимостью повысить жесткость пальца.

Код ДЗЧ:
740.1004022

Кольцо стопорное

Стальные гарантируют надежную фиксацию пальца в поршне.
К005596970

Кольцо поршневое компрессионное верхнее

Производства фирмы <Федерал Могул> Германия. Изготовлено из высокопрочного чугуна, термоулучшенное, что гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде двухсторонней трапеции. На рабочую поверхность нанесено хромокерамическое покрытие повышенной в 2 раза износостойкости, специальная притирка обеспечивает ей бочкообразную форму со смещением к нижнему торцу, что улучшает приработку и повышает ресурс работы гарантирует 100% прилегание к гильзе цилиндров.

К005469690

Кольцо поршневое компрессионное нижнее

Производства фирмы <Федерал Могул> Германия Изготовлено из серого специального чугуна, азотированное, гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде односторонней трапеции. Форма рабочей поверхности <минутная> с уклоном к нижнему торцу и острой кромкой примыкающий к нему, это улучшает маслосъёмные свойства кольца и позволяет наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза.. гарантирует 100% прилегание к гильзе цилиндров.

К035469700

Кольцо поршневое маслосъемное

Производства фирмы <Федерал Могул> Германия Коробчатого типа, уменьшенной до 4 мм высоты, что наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза изготовлено из серого специального чугуна с шлифованным пружинным расширителем, имеющим переменный шаг по периметру кольца. Расширитель с повышенной теплостойкостью гарантирует стабильную оптимальную упругость на протяжении всего ресурса работы. На рабочие пояски нанесено износостойкое хромовое покрытие. Высокая точность обработки кольца обеспечивает выполнение требований по расходу масла на угар.

Код ДЗЧ:
740.60-1000128-03

Комплект в сборе

Ремонтный комплект для двигателей КАМАЗ экологического класса ЕВРО- 3 с увеличенным ходом поршня 130 мм. Детали изготовлены по основному технологическому процессу, исключающему ремонтные размеры. Точность обработки исключает необходимость селективного подбора деталей. Обеспечивает возможность установки в блок цилиндров без контроля надпоршневого зазора подрезки днища поршня. Расход масла на угар в сравнении с двигателями экологического класса EВРО-2 снижен в 2 раза. Работоспособность подтверждена моторными испытаниями.

Код ДЗЧ:
740.61-1004015

Поршень

Изготовлен из специального алюминиевого сплава повышенной теплостойкости, канавка верхнего компрессионного кольца упрочнена вставкой из высоколегированного чугуна, боковая поверхность имеет оригинальную овально бочкообразную форму. Расстояние от оси отверстия поршневого пальца до днища минимальное, позволяет устанавливать в гильзы без контроля зазора с головкой блока цилиндров. Для исключения контакта с головкой цилиндров высота поршня уменьшена на 5 мм Расстояние от днища до нижнего торца канавки верхнего кольца уменьшено до 17 мм. Камера сгорания тороидальная с вытеснителем, увеличенного диаметра, смещена в сторону от выборок под клапаны на 5 мм. В нижней части, на юбке выполнена выборка для исключения контакта с форсункой охлаждения и с противоположной стороны выборка для исключения возможного контакта с ребром ьлока цилиндров. Изготовлен на высокоточном оборудовании фирмы <ХЮЛЛЕР> Германия.

Код ДЗЧ:
740.51-1002021

Гильза цилиндра

Изготовлена из серого специального чугуна, легированного молибденом, фосфором и бором, не подвергается термообработке. На рабочую поверхность нанесена сетка чередующихся рисок и впадин определенной глубины с подобранным углом наклона, обеспечивающая оптимальную маслоёмкость для приработки поршневых колец. Финишная обработка выполнена на высокоточном оборудовании фирмы <НАГЕЛЬ> Германия, что позволяет отказаться от селективного подбора с поршнем по диаметру. Высота гильзы на 3 мм меньше высоты гильзы примененной на двигателях с ходом поршня 120 мм. Это необходимо для исключения контакта с шатуном. Унифицирована для применения на всех моделях двигателей КАМАЗ размерностью 120х130.

Код ДЗЧ:
740.1002024

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров по нижнему направляющему поясу гильзы.
Код ДЗЧ:
740.1002031

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров под опорным буртом гильзы.
7406.1004020

Палец

Рабочая поверхность упрочнена цементацией, объёмная закалка обеспечивает улучшенную структуру сердцевины, высокую усталостную прочность и высокую стабильность формы и размеров. Современные технологии обработки обеспечивают изготовление диаметра наружной поверхности с точностью в несколько микрон при очень высокой чистоте. Отличается уменьшенным диаметром отверстия, что вызвано необходимостью повысить жесткость пальца.

Код ДЗЧ:
740.1004022

Кольцо стопорное

Стальные гарантируют надежную фиксацию пальца в поршне.
К005596970

Кольцо поршневое компрессионное верхнее

Производства фирмы <Федерал Могул> Германия. Изготовлено из высокопрочного чугуна, термоулучшенное, что гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде двухсторонней трапеции. На рабочую поверхность нанесено хромокерамическое покрытие повышенной в 2 раза износостойкости, специальная притирка обеспечивает ей бочкообразную форму со смещением к нижнему торцу, что улучшает приработку и повышает ресурс работы гарантирует 100% прилегание к гильзе цилиндров.

К005469690

Кольцо поршневое компрессионное нижнее

Производства фирмы <Федерал Могул> Германия Изготовлено из серого специального чугуна, азотированное, гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде односторонней трапеции. Форма рабочей поверхности <минутная> с уклоном к нижнему торцу и острой кромкой примыкающий к нему, это улучшает маслосъёмные свойства кольца и позволяет наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза.. гарантирует 100% прилегание к гильзе цилиндров.

К035469700

Кольцо поршневое маслосъемное

Производства фирмы <Федерал Могул> Германия Коробчатого типа, уменьшенной до 4 мм высоты, что наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза изготовлено из серого специального чугуна с шлифованным пружинным расширителем, имеющим переменный шаг по периметру кольца. Расширитель с повышенной теплостойкостью гарантирует стабильную оптимальную упругость на протяжении всего ресурса работы. На рабочие пояски нанесено износостойкое хромовое покрытие. Высокая точность обработки кольца обеспечивает выполнение требований по расходу масла на угар.

820.52-1000128

Комплект в сборе

Ремонтный комплект для газовых двигателей КАМАЗ экологического класса ЕВРО- 3 с увеличенным ходом поршня 130 мм. Детали изготовлены по основному технологическому процессу, исключающему ремонтные размеры. Точность обработки исключает необходимость селективного подбора деталей. Обеспечивает возможность выбора оптимального надпоршневого зазора за счет подрезки днища поршня. Расход масла на угар в сравнении с двигателями экологического класса EВРО-2 снижен в 2 раза. Работоспособность подтверждена длительными моторными испытаниями.

820.52-1004015-40

Поршень

Изготовлен из специального алюминиевого сплава повышенной теплостойкости, канавка верхнего компрессионного кольца упрочнена вставкой из высоколегированного чугуна, боковая поверхность имеет оригинальную овально бочкообразную форму. Расстояние от оси отверстия поршневого пальца до днища максимальное, позволяет проводить подрезку и обеспечивать оптимальный зазор с головкой блока цилиндров. Для исключения контакта с головкой цилиндров высота поршня уменьшена на 5 мм Расстояние от днища до нижнего торца канавки верхнего кольца уменьшено до 17 мм. Камера сгорания выполнена соосно с поршнем, цилиндрическая, увеличенного диаметра и глубины. В нижней части, на юбке выполнена выборка для исключения контакта с форсункой охлаждения и с противоположной стороны выборка для исключения возможного контакта с ребром ьлока цилиндров. Изготовлен на высокоточном оборудовании фирмы <ХЮЛЛЕР> Германия.

Код ДЗЧ:
740.51-1002021

Гильза цилиндра

Изготовлена из серого специального чугуна, легированного молибденом, фосфором и бором, не подвергается термообработке. На рабочую поверхность нанесена сетка чередующихся рисок и впадин определенной глубины с подобранным углом наклона, обеспечивающая оптимальную маслоёмкость для приработки поршневых колец. Финишная обработка выполнена на высокоточном оборудовании фирмы <НАГЕЛЬ> Германия, что позволяет отказаться от селективного подбора с поршнем по диаметру. Высота гильзы на 3 мм меньше высоты гильзы примененной на двигателях с ходом поршня 120 мм. Это необходимо для исключения контакта с шатуном. Унифицирована для применения на всех моделях двигателей КАМАЗ размерностью 120х130.

Код ДЗЧ:
740.1002024

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров по нижнему направляющему поясу гильзы.
Код ДЗЧ:
740.1002031

Кольцо уплотнительное

Из резиновой смеси стойкой к моторным масла и тосолу, обеспечивает надежное уплотнение полости охлаждения блока цилиндров под опорным буртом гильзы.

7482.1004020

Палец

Рабочая поверхность упрочнена цементацией, объёмная закалка обеспечивает улучшенную структуру сердцевины, высокую усталостную прочность и высокую стабильность формы и размеров. Современные технологии обработки обеспечивают изготовление диаметра наружной поверхности с точностью в несколько микрон при очень высокой чистоте. Отличается уменьшенным диаметром отверстия по сравнению с пальцем примененным на двигателях ЕВРО-1, 2 и 3, это вызвано необходимостью обеспечить балансировку двигателя.

Код ДЗЧ:
740.1004022

Кольцо стопорное

Стальные гарантируют надежную фиксацию пальца в поршне.
К005596970

Кольцо поршневое компрессионное верхнее

Производства фирмы <Федерал Могул> Германия. Изготовлено из высокопрочного чугуна, термоулучшенное, что гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде двухсторонней трапеции. На рабочую поверхность нанесено хромокерамическое покрытие повышенной в 2 раза износостойкости, специальная притирка обеспечивает ей бочкообразную форму со смещением к нижнему торцу, что улучшает приработку и повышает ресурс работы гарантирует 100% прилегание к гильзе цилиндров.

К005469690

Кольцо поршневое компрессионное нижнее

Производства фирмы <Федерал Могул> Германия Изготовлено из серого специального чугуна, азотированное, гарантирует заданные упругие свойства на протяжении всего срока эксплуатации. Поперечное сечение в виде односторонней трапеции. Форма рабочей поверхности <минутная> с уклоном к нижнему торцу и острой кромкой примыкающий к нему, это улучшает маслосъёмные свойства кольца и позволяет наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза. гарантирует 100% прилегание к гильзе цилиндров.

К035469700

Кольцо поршневое маслосъемное

Производства фирмы <Федерал Могул> Германия Коробчатого типа, уменьшенной до 4 мм высоты, что наряду с другими мероприятиями снизить расход масла на угар более чем в 2 раза изготовлено из серого специального чугуна с шлифованным пружинным расширителем, имеющим переменный шаг по периметру кольца. Расширитель с повышенной теплостойкостью гарантирует стабильную оптимальную упругость на протяжении всего ресурса работы. На рабочие пояски нанесено износостойкое хромовое покрытие. Высокая точность обработки кольца обеспечивает выполнение требований по расходу масла на угар.

Двигатель внутреннего сгорания — урок. Физика, 8 класс.

Обрати внимание!

Двигатель внутреннего сгорания — распространённый вид теплового двигателя, который работает на жидком топливе (бензин, керосин, нефть) или горючем газе.

 

Двигатель состоит из цилиндра, в котором перемещается поршень \( 3\), соединённый при помощи шатуна \(4\) с коленчатым валом \(5\).

 

Два клапана, впускной \(1\) и выпускной \(2\), при работе двигателя автоматически открываются и закрываются в нужные моменты.

  1. клапан для подачи горючей смеси;
  2. клапан для удаления отработанных газов;
  3. цилиндр;
  4. шатун;
  5. коленчатый вал;
  6. свеча для воспламенения горючих газов в цилиндре 3.

 

Рис. \(1\). Устройство двигателя

 

Ход поршня — расстояние между мёртвыми точками, крайними положениями поршня в цилиндре.

 

Такие двигатели называют четырёхтактными, т.к. рабочий цикл происходит за четыре хода или такта: впуск (а), сжатие (б), рабочий ход (в) и выпуск (г).

 

 

Рис. \(2\). Процесс работы двигателя

 

1 такт (впуск) — поршень «всасывает» горючую смесь.

 

 

2 такт (сжатие) — при сжатии температура смеси и давление повышаются. 

 

3 такт (рабочий ход) —  рабочая смесь воспламеняется от электрической искры свечи зажигания (поршень под действием этого давления начинает перемещаться к нижней мёртвой точке, создавая крутящий момент). 

 

 

4 такт (выпуск) — выброс отработанных газов.

 

 

После такта выпуска начинается новый рабочий цикл, всё повторяется.

Для того чтобы вращение вала было более равномерным, двигатель обычно делают многоцилиндровым: 2-, 3-, 4-, 6-, 8-цилиндровым и т.д.

Источники:

Рис. 1. Устройство двигателя. © ЯКласс.
Рис. 2. Процесс работы двигателя. © ЯКласс.
http://usauto.ucoz.ru/news/bilet_6/2011-04-26-4

http://autooboz.info/wp-content/uploads/2007/09/dvigatel-vnutrennego-sgoraniya2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-3.jpg

 

Ход поршня - Справочник химика 21

    Насосы одинарного (или простого) действия за один двойной ход поршня один раз всасывают и один раз нагнетают жидкость. На рис. 42 показана схема поршневого насоса одинарного (простого) действия. При движении поршня 5 слева направо в цилиндре создается разрежение, т. е. давление оказывается ниже, чем иа поверхности перекачиваемой жидкости в приемнике I. Вследствие разности давлений открывается всасывающий клапан 3 и жидкость по всасывающему трубопроводу 2 поступает в цилиндр насоса. Этот процесс называется всасыванием. Он длится до тех пор, пока поршень не займет крайнее правое положение. При движении поршня справа налево всасывающий клапан 3 опускает-(я, а нагнетательный клапан 7 открывается, и жидкость под давле- [c.92]
    Насосы двойного действия за один двойной ход поршня два раза всасывают и два раза нагнетают жидкость. Такие насосы имеют два всасывающих и два нагнетательных клапана обе стороны поршня являются рабочими. Па рис. 43 представлена схема горизонтального насоса двойного действия с дисковым поршнем. При ходе поршня 2 вправо открываются всасывающий клапан / и нагнетательный клапан 4 с левой стороны насоса жидкость всасывается, а с правой нагнетается, клапаны 3 и 5 закрыты. При ходе поршня влево клапаны 5 и 3 открываются, а клапаны 1 я 4 закрываются, теперь уже с левой стороны пасоса жидкость нагнетается, а с правой всасывается. [c.93]

    Количество подаваемой жидкости слишком мало и не соответствует расчетной производительности насоса при данно. числе ходов поршня [c.270]

    После окончания прогрева паровых цилиндров включают манометры и плавно открывают вентиль свежего пара так, чтобы поршни начали двигаться без рывков и очень медленно число двойных ходов поршней должно достигнуть номинальной величины (определяется паспортными данными насоса) в течение 8—10 мин. Обычно оно колеблется от 16 до 32 в 1 мин. [c.231]

    Насос прохватывает (работает с резкими рывками), произвольно меняя число ходов поршня [c.270]

    Металлический стук при изменении хода поршня, возникающий из-за  [c.271]

    Отрегулировать нормальный ход поршня [c.272]

    При унификации баз в качестве основного параметра принимается сила давления газа (поршневая сила) одного ряда компрессора. Другими параметрами баз в зависимости от поршневой силы являются скорость вращения вала и ход поршня, производными параметрами — средняя скорость поршня и максимальная мощность, приходящаяся на один ряд. [c.193]

    Расстояние между крайними положениями поршня в цилиндре называется ходом поршня и обозначается буквой 5. В течение одного оборота кривошипа поршень совершает два хода или один двойной ход. [c.93]

    К основным параметрам, характеризующим работу поршневого пасоса, относятся производительность, напор, мощность, коэффициент полезного действия и число двойных ходов поршня в единицу времени. [c.100]

    Двойным ходом поршня называется полное его перемещение из одного крайнего положения в другое и обратно. [c.100]

    Следовательно, теоретическая подача насоса одинарного действия за один двойной ход поршня (один оборот вала) равна [c.100]

    При ходе поршня вправо в насосе двойного действия (см. рис. 43) подается жидкость в объеме, равном F—f)S м . При об- [c.100]

    Вследствие несвоевременного подъема всасывающих клапанов жидкость засасывается не на всем ходе поршня. [c.102]

    На протяжении хода всасывания подача равна нулю, что графически изображается отрезком ГА. При обратном ходе поршня происходит подача жидкости, графически изображенная синусоидой АБВ. Построение шести точек этой синусоиды показано на рисунке. Площадь, ограниченная прямой АВ и синусоидой АБВ, изображает ii принятом масштабе объем жидкости, поданной за один двойной ход поршня. [c.105]


    Заменим эту площадь площадью равновеликого прямоугольника Г ДЕВ, имеющего основание 2лг и высоту h, соответствующую в принятом масштабе средней величине подачи Q p, которую имел бы насос, если бы в течение всего двойного хода поршня подача была равномерной. Максимальной подаче насоса Q max соответствует наибольшая высота синусоиды эта высота равна (в масштабе) радиусу полуокружности. Возьмем отношение этих величин  [c.105]

    I ступени — 1000, 11 — 720, 111 — 420, IV — 380, V — 270 н VI— 100 мм. Диаметр штоков для всех ступеней 130 мм, ход поршня 450 мм. Цилиндры IV, V и VI ступеней выполнены в виде двух дифференциальных блоков одинаковой конструкции блок IV—VI ступеней с расположением между ними уравнительной полости давле- [c.230]

    Объем пространства сжатия при нижней границе хода поршня [c.402]

    Диаметр цилиндра, мм Ход поршня, мм. Частота вращения колен чатого вала, об/мин. Мощность, кВт.  [c.141]

    Механизм обеспечивает неизменность хода поршня тормозного цилиндра постоянным регулированием рычажной передачи в зависимости от износа тормозных колодок. Механизм устройства закрыт. Винт находится на открытом воздухе Рабочая среда —сжатый воздух. Механизм расположен под вагоном [c.119]

    Ход поршня 500 мм.. Давление воздуха [c.122]

    В работе [92] указывается, что на деталях с более низкой температурой, как правило, наблюдается повышенное нагарообразование. Это подтверждается результатами исследований и других авторов, которыми установлено, что в одноцилиндровом предкамерном двигателе с отношением хода поршня к диаметру цилиндра 5/Дц=1,21 (115/95) и степенью сжатия е=19 увеличение температуры стенок камеры сгорания от 200 до 550°С привело к уменьшению отложений нагара в 30 раз. Эта особенность характерна для двигателя данной конструкции и режима работы его. Ее нельзя распространять на все типы двигателей внутреннего сгорания. [c.44]

    Прямодействующие насосы с большим ходом поршня особенно удобны для перемещения сжиженных газов и легко испаряющихся нефтепродуктов, а также для перекачивания нефтепродуктов, вязкость которых сильно меняется в зависимости от температуры (с увеличением вязкости автоматнчсскн снижается число ходов поршня, при этом уменьшается производительность и развивается большее давление, под действием которого продавливается застывшая жидкость). [c.28]

    S — длина хода поршня, м п — число двойных ходов поришя 11 минуту. [c.31]

    Уменьшить высоту всасыв21шя и установить насос с подпором, т. е. так. чтобы жидкость подходила к нему самотеком под некоторым напором. Величина его должна быть тем больше, чем выше температура или вязкость жидкости и чем больше число двойных ходов поршня. Увеличить давление во всасывающем трубопроводе и снизить температуру [c.269]

    Ход поршня меньше нормального ии-за неправильной регулировки механизма парораснрсделения [c.270]

    Уменьшить ход поршня с таким расчетом, чтобы кольца сзеш шались пе более чем на 1—2 мм [c.272]

    Предположим, что поршень 3 двигателя находится в верхнем мертвом положении и при вращении вала 5 двигается вниз. При этом в цилиндре 2 создается разрежение, газораспределительный механизм открывает впускной клапан 6, и цилиндр заполняется воздухом. Этот такт называется всасыванием (рис. 35, а). К моменту достижения поршнем нижнего крайнего положения прекращается всасывание воздуха и газораспределительный механизм закрывает впускной клапан. При движении поршня вверх клапаны впускной 6 и выхлопной 1 закрыты, происходит сжатие воздуха в иплиндре. Этот такт называется тактом сжатия (рис. 35, б). В конце такта сжатия, когда давление воздуха достигает 40 ат, а его температура повышается до 600° С, через форсунку 7 впрыскивается мелкораспыленное топливо. Попадая в среду сильно разогретого воздуха, топливо быстро воспламеняется и сгорает (рис. 35, в). При этом в цилиндре значительно повышается давление и температура. Под действием этого давления поршень опускается вниз и через шатун 4 передает движение коленчатому валу 5. Этот такт называется рабочим ходом. При обратном ходе поршня газораспределительный механизм открывает выхлопной кланан [c.78]

    При ходе поршня вправо жидкость через всасывающий клапан 1 поступает в цилиндр. При обратном ходе поршня эта жидкость передается в пространство над нагнетательным клапаном 2. При этом движении поршня в правой стороне насоса освобождается пространство, равное разности объемов поршней диаметрами Dad. Это npo TpaFi- [c.95]

    В насосе одинарного действия (см. рис. 42) при ходе поршня вправо (или в вертикальных—вверх) всасывается объем жидкости, равный Р8 м . При обратном ходе поршня эта жидкость вытесняется в нагнетательный трубоп ювод. [c.100]

    Оно называется степенью неравномерности подачи насоса. Площадь прямоугольника Г ДЕВ равна 2пгН и соответствует (в масштабе) подаче насоса за один двойной ход поршня Г5  [c.105]

    Индикаторные диаграммы строят в прямоугольных координатах давление — объем (р ) или давление — ход поршня (рз). На горп-зонтальноп оси в принятом масштабе откладывают ход поршня нл[1 описываемый им объем, а на вертикальной оси — соответствующие зпачеиня давления под поршнем, также в определенном масштабе. [c.112]

    Действительная индикаторная диаграмма поршневого пасоса существенно отличается от теоретической. Линия повышения давления 2-6 при ходе поршня влево несколько отклонена от прямой 2-3 вследствие того, что в цилиндре может быть воздух или пары перекачиваемой жидкости, при сжатии которых уменьшается объем, а также в результате того, что из-за запаздывания посадки всасывающего клапана часть жидкости уходит во всасываюилш трубопровод. [c.112]

    Действительный процесс сжатия в цилиндре компрессора существенно отличается от теоретического. Прелнагнетательный трубопровод, ЧсСть его остается между клапанами и крайним положением поршня . В поршневых компрессорах между крайним положением порш-Н5 и крышкой цилиндра всегда устанавливается определенный з зор. Сжатый газ, оставшийся после нагнетания в цилиндре, занимает объем, называемый вредным пространством Уо (рис. 124). Прп обратном ходе поршня газ, заключенный во вредном нростран-стве, расширяется по линии 2—1 и отдает почти всю энергию, которая была затрачена на его сжатие. Таким образом, наличие вредного пространства пе влияет на расход энергии. Кроме того, сжатый газ, находящийся во вредном пространстве, смягчает действие инерцио1П1ых сил поршня вблизи крайнего его положения. [c.214]


    Всасывание газа начинается в точке 1 лишь тогда, когда газ вредного пространства расширится и давление его понизится до Р. Всасывание газа происходит не на всем ходе поршня, а лишь на части его. Всасывающие клапаны и всасывающий трубопровод оказывают сопротивление движению газа, особенно в период подъема клапанов. Поэтому давление в начале всасывания снижается несколько ниже / ,. Далее всасывание газа (линия 1—4) происходит почти при постоянном давлении. Сжатие газа протекает по политропе 4—3. Когда давление в цилиндре в процессе сжатия достигнет величины, несколько превышающей давление р2, то открывается нагнетательный кланан и начинается процесс нагнетания (линия 3—2). Некоторый избыток давления требуется для п зеодоления инерции и сопротивления нагнетательного клапана. [c.214]

    Если воспрепятствовать закрытию самодействующего всасывающего клапапа в период нагнетания, то газ, поступивший в цп-линдр, будет вытеснеп во всасывающий трубопровод. Иа этом принципе основано регулирование производительности компрессора отжимом всасывающих клапанов. Отжим клапанов осуществляют вилками специальной конструкции, которые приводятся в действие вручную илн автоыатнче ски. Этот способ регулирования производительности имеет следующие разновидности полный отжим клапанов, частичный отжим клапанов и отжим клапанов па части хода поршня. [c.219]

    Регулирование отжимом клапанов па части хода поршия состоит в том, что в конце процесса всасывания всасывающие клапаш принудительно задерживаются в открытом состоянии и 1акрывают-ся иа известной части обратного хода поршня. Изменяя длительность задержки посадки клапанов, можно плавно регулировать производительность компрессора. В различных типах компрессоров применяют электромагнитные, гидравлические и ниевматические регулирующие устройства для отжима клапанов па части хода поршня. [c.219]

    На рис. 133 дан общий вид вертикального трехступенчатого кислородного компрессора без смазки цилиндров. Его производительность 40 м /мип, конечное давление 76 ат, скорость вращения вала 345 об/мнн, ход поршня 300 мм, диаметры цилиндров 580/300/170 мм, мощность иа валу 400 кВт. Цилиндры 2 изготовлены из специального каучука. Поршни 1 выполнены из бронзы АЖ-9- г, штоки 5 — из нержавеющей стали 3X13, фонари 4, крышки клапанов и корпуса холодильников — из стали Х18НП, трубы газопровода—из меди М3. Клапаны 3 всех ступеней прямоточные, сед- [c.243]

    Классификационные испытания масел по методам R L-38 и LTD проводят на одноцилиндровом бензиновом двигателе Labe o (диаметр цилиндра 96,5 мм, ход поршня 95,2 мм, рабочий объем цилиндра 0,69 л). Методом R L-38 определяют противокоррозионные и антиокислительные свойства моторных масел методом LTD оценивают склонность масел к образованию низкотемпературных осадков. [c.133]


Изучаем странные двигатели, застрявшие на обочине прогресса — ДРАЙВ

Двигатели Ванкеля, Стирлинга, разного рода газотурбинные установки так и не стали автомобильным мейнстримом. Ряд известных компаний (от Мазды до GM, от Мерседеса до Volvo) работали над ними десятки лет, упорствовали маленькие фирмы и отдельные изобретатели. Увы, в конце концов выяснялось, что подводных камней в той или иной конструкции намного больше, чем казалось вначале. Но это не значит, что развитие альтернативных агрегатов невозможно. Энтузиасты перебирают идею за идеей, и мне как инженеру-двигателисту интересно поделиться с вами рядом экзотических схем.

Некоторые создатели перспективных двигателей решили, что комбинация из цилиндра, поршня, шатуна и коленвала отлично себя зарекомендовала более чем за столетие и, чтобы улучшить параметры ДВС, не надо изобретать её заново — достаточно лишь подправить кое-какие аспекты. Поэтому первый в нашем обзоре — мотор американской компании Scuderi Group, который имеет классические такты впуска, сжатия, рабочего хода и выпуска, но происходят они не в одном и том же цилиндре, а в разных. Так называемый холодный цилиндр отвечает за впуск и сжатие, а второй, горячий — за рабочий ход и выпуск.

В простейшем моторе Scuderi цилиндров два: поршень в холодном цилиндре отстаёт на 30 градусов поворота коленвала от собрата в горячем.

Пока в рабочем цилиндре идёт расширение газов, в холодном, компрессорном, — такт впуска. В рабочем — выпуск, в холодном — сжатие. В конце такта сжатия поршни приближаются к своим верхним мёртвым точкам, смесь через перепускной канал перебрасывается из холодного цилиндра в горячий и поджигается. Такой разделённый цикл (в принципе — тот же цикл Отто, пусть и модифицированный) американцы придумали в 2006 году, а в 2009-м построили опытный Scuderi Split Cycle Engine. У компрессорного и рабочего цилиндров могут быть разные диаметры и ходы поршней, что даёт гибко настраивать параметры — получается аналог цикла Миллера с дополнительным расширением газов.

Экспериментальный литровый мотор Scuderi на стенде работает плавно и относительно тихо — даже без глушителя!

По расчётам мотор Scuderi на 25% экономичнее обычного, а с турбонаддувом и теплообменником, передающим энергию выхлопных газов воздуху в перепускном канале, и того выше. В четырёхцилиндровом варианте один компрессорный цилиндр может загонять смесь в три рабочих.

Если к каналу между цилиндрами добавить ответвление с клапанами и баллоном высокого давления, можно заставить такой мотор собирать энергию при торможении и использовать её при разгоне (этот режим показан на последней минуте первого ролика). Однако на протяжении уже ряда лет деятельность компании Scuderi Group ограничивается лишь опытными образцами и участием в выставках. Похоже, реальная экономичность тут всё же не может перебить высокую сложность конструкции.

Двухтактный агрегат Paut Motor использует принцип, подобный применённому в моторах Scuderi Group, — сжатие и рабочий ход тут происходят в разных цилиндрах, между которыми устроены перепускные каналы.

К разделённому рабочему циклу обратились было и разработчики хорватской фирмы Paut Motor. Их «разнесённая» конструкция привлекла меньшим числом деталей, низким трением и сниженным шумом. А необходимость внешнего бака для системы смазки, вызванная тем, что в картере масла не предусмотрено, не испугала. Изобретатели построили несколько опытных образцов. Для рабочего объёма в семь литров их габариты (500×440×440 мм) и вес (135 кг) оказались чуть ли не вдвое ниже, чем у традиционных ДВС. А отдачу так и не выяснили. Последний прототип был собран в 2011 году, а затем проект заглох.

В агрегате Paut Motor — четыре рабочих камеры с поршнями диаметром 100 мм и четыре компрессионных (120 мм). Двухсторонние поршни передают усилия на коленвал, который, благодаря паре шестерён с внутренним зацеплением, совершает планетарное движение.

Двухтактный двигатель Bonner (по имени спонсора, фирмы Bonner Motor), изобретённый в 2006 году в США Вальтером Шмидом, устроен ещё сложнее. Как и в проекте Paut Motor, цилиндры тут расположены буквой X, а коленвал тоже совершает планетарное движение за счёт системы шестерён.

Ключевое отличие от схемы фирмы Paut Motor — роль рабочих поршней играют подвижные цилиндры, соединённые с коленвалом (показаны красным). А с внешней стороны их закрывают неподвижные поршни (отмечены серым).

За газораспределение в Боннере отвечают клапаны в донышках цилиндров и вращающиеся золотники в корпусе мотора. При этом внешние поршни могут немного смещаться под давлением масла, обеспечивая переменную степень сжатия. Запутанная схема! А всё — ради высокой мощности на единицу веса. В теории Bonner выглядит интересно, но на практике о нём уже давно нет никаких новостей — судя по всему, надежд он не оправдал.

Некий мистер Смоллбон получил американский патент на аксиальный мотор ещё в 1906 году. Но если бы такой агрегат был идеалом, через 110 лет все автомобили использовали бы его.

Другие изобретатели не меняли рабочие циклы ДВС, а сосредотачивались на расположении его частей. Таковы, например, аксиальные моторы, которым уже больше ста лет (один из ранних патентов — на рисунке выше). Все они отличаются деталями, но объединены общим принципом — цилиндры располагаются, как патроны в барабане револьвера, с соосным выходным валом. За преобразование возвратно-поступательных движений поршней во вращение вала отвечают разные системы вроде наклонённых к продольной оси двигателя штифтов, косых шайб и тому подобного.

По такому принципу сегодня работают некоторые компрессоры. Добавив продуманное газораспределение и зажигание, можно превратить подобный блок в мотор...

...такой, как американский Dina-Cam 1960-х с полувековыми корнями. Благодаря хорошему соотношению веса и мощности аксиальные агрегаты прочили на роль моторов для лёгких самолётов.

Разновидностью аксиальных агрегатов является новозеландский проект фирмы Duke Engines — пятицилиндровый четырёхтактник рабочим объёмом три литра. По сравнению с классическим ДВС того же литража этот был, по расчётам авторов, на 19% легче и на 36% компактнее. Ему сулили применение в самых разных областях, но мечты о завоевании целого мира остались мечтами.

Опытный образец мотора Duke был построен в 2012 году. Потом он мелькал на выставках, собирал призы, но вот уже несколько лет новостей о нём нет.

Ещё более сложный аксиальный пример — двигатель RadMax канадской фирмы Reg Technologies. Здесь вместо цилиндров в общем барабане с помощью тонких лопастей организована дюжина отсеков. В прорезях ротора установлены пластины, которые сдвигаются вдоль них по мере его вращения. С торцов полученные переменные объёмы ограничивают изогнутые поверхности: они задают траекторию движения лопастей и заведуют газообменом.

Основные части мотора RadMax. За один оборот вала тут происходит 24 полных рабочих цикла.

Схема RadMax позволяет создавать двигатели под разные виды топлива, хотя изначально изобретатели выбрали дизельное. В 2003 году был построен образец диаметром и длиной всего 152 мм. Он развивал 42 силы — в разы больше, чем схожий по габаритам ДВС. Позже фирма отчиталась о создании более крупных прототипов на 127 и 380 сил. Но, судя по релизам, вся её деятельность по-прежнему не выходит за рамки экспериментов.

Ещё один пример превосходства теории над практикой — тороидальный мотор Round Engine (или VGT Engine) уже исчезнувшей канадской компании VGT Technologies. Первые прототипы двигателя с тором переменной геометрии (отсюда и буквы VGT — Variable Geometry Toroidal Engine) инженеры испытывали ещё в 2005 году.

Авторы кругового двигателя избавились от возвратно-поступательных движений. Отсюда — радикальное снижение вибраций. Плюсом можно назвать минимальное число деталей и хорошую расчётную экономичность.

Тор здесь играет роль цилиндра, внутри которого вращается ротор с парой закреплённых на нём поршней. Необходимые для обеспечения рабочих тактов переменные объёмы образуются между поршнями с помощью тонкого распределительного диска с вырезом под поршни, который ремённым или иным приводом вращается поперёк тора. Этот диск ограничивает топливно-воздушную смесь в процессе сжатия и рабочего хода.

Система фирмы Garric Engines похожа на VGT, однако вместо поперечного распреддиска использовано шесть поворотных золотников.

В 2009 году свой тороидальный мотор, принципиально повторяющий канадский, разработали американцы Гарри Келли и Рик Айвас (видео выше). По их оценке, тор полуметрового диаметра обеспечивал бы 230 л.с. и около 1000 Н•м всего при 1050 об/мин. Но… На сайте их фирмы Garric Engines сейчас висит заглушка «Спасибо за интерес. В будущем страница может быть обновлена». Возможно, чуть лучшая судьба ждёт так называемый нутационный двигатель, придуманный американцем Леонардом Мейером в 2006 году — его хотя бы построили в нескольких экземплярах.

Главный принцип нутационного диска: в процессе работы он не вращается вокруг вала, а качается из стороны в сторону. Добавив перегородки, получаем отсеки, в которых газ может сжиматься и расширяться.

Нутация по-латински означает «кивать». Мейер сформировал четыре рабочие камеры переменного объёма между корпусом мотора и «кивающим» по сторонам диском, который играет роль поршня. Диск разрезан пополам вдоль своего диаметра и нанизан на Z-образный вал, с которого и снимается мощность. За газообмен отвечают каналы и клапаны в корпусе.

Рабочий диск показан в разрезе. Минимализму, уравновешенности и лёгкости нутационной конструкции позавидует даже двигатель Ванкеля.

Прототипы мотора Мейера построила компания Baker Engineering и родственная ей Kinetic BEI. С единственным диском диаметром 102 мм агрегат развивает семь сил, а с парой дисков по 203 мм — уже 120! Длина двухдискового двигателя — 500 мм, диаметр — 300, а рабочий объём — 3,8 л. На килограмм веса — 2,5−3 «лошади» против одной-двух у массовых атмосферных ДВС (из немассовых некоторые моторы Ferrari выдают больше трёх сил на килограмм, но при высоченных 9000 об/мин). Литровая мощность, правда, не впечатляет. Ныне Baker и Kinetic вроде как доводят проекты до ума, хотя особой активности на их сайтах не видно.

За один оборот вала в двухдисковом нутационном агрегате происходят те же четыре рабочих хода, что и в восьмицилиндровом поршневом «четырёхтактнике». На фото — одно- и двухдисковые рабочие прототипы. (Кстати, из двух дисков в принципе можно создать и машину с разделённым циклом, одному отдать сжатие смеси, другому рабочий ход.)

В 2010 году нутационный мотор попал в зону интереса исследовательского центра ВВС США. Гарри Смит, менеджер лаборатории, демонстрирует внутренности мотора и объясняет, что особую ценность конструкция представляет для лёгкой авиации.

Идея роторных агрегатов различного типа так часто привлекает новаторов, будто один лишь отход от знакомой схемы даёт существенное повышение характеристик. Так, Николай Школьник, выходец из СССР, давно перебравшийся в США, с сыном Александром разработал мотор, напоминающий двигатель Ванкеля, вывернутый наизнанку. Ротор арахисовой формы также вращается в треугольной камере, но в отличие от агрегата Ванкеля уплотнители закреплены не на поршне, а на стенках камеры.

В роторе LiquidPiston есть полость, играющая свою роль в газообмене. Процесс сгорания проходит при постоянном объёме, а затем идёт расширение — это один из факторов, повышающих КПД.

Для развития конструкции Школьники основали фирму LiquidPiston, которой заинтересовалось оборонное агентство DARPA — теперь оно софинансирует эксперименты в расчёте на перспективы работы «арахисовых» агрегатов в лёгких летательных аппаратах, включая беспилотники, и в переносных генераторах. Опытный моторчик рабочим объёмом 23 см³ обладает неплохим для таких габаритов КПД в 20%. Теперь авторы нацелены на дизельный прототип весом около 13 кг и мощностью 40 л.с. для установки на гибридный автомобиль. Его КПД якобы вырастет уже до 45%.

Первый образец мотора Школьников можно положить на ладонь. Он весит 1,8 кг и может заменить вдесятеро более тяжёлый поршневой ДВС карта (показан слева). Мощность всего 3 л.с., но классический двигатель такого размера был бы ещё слабее.

Последний рассмотренный нами мотор демонстрирует, что идея плоского агрегата (ротор ведь можно сделать очень узким) заманчива. Вместе с тем для её реализации сами роторы не так обязательны — достаточно «оквадратить» традиционный поршень и, соответственно, сделать прямоугольным на виде сверху цилиндр.

Этой странной разработке фирмы Pivotal Engineering уже несколько лет, в течение которых создан ряд образцов, приводивших в движение мотоциклы и самолёты. Авторы адресуют так называемый качающийся поршень в первую очередь авиации. Помимо высоких выходных характеристик по отношению к весу и габаритам, такой двухтактный агрегат отлично поддаётся форсировке за счёт прохождения сквозь неподвижную ось поршня (рисунок ниже) жидкостного канала охлаждения. С иной схемой такой трюк затруднителен.

Задумка компании Pivotal Engineering из Новой Зеландии представляет собой мотор с качающимися прямоугольными (в плане) поршнями. Один их край закреплён на неподвижной оси, второй — связан с шатуном. Справа — четырёхцилиндровый образец на 2,1 л.

За пределами нашего обзора осталось ещё много экзотических разработок вроде 12-роторного мотора Ванкеля, двигателя Найта или агрегатов со встречными поршнями, ДВС с изменяемой степенью сжатия или с пятью тактами (есть и такие!), а ещё роторно-лопастные агрегаты, в которых составные части ротора совершают движения, будто сходящиеся и расходящиеся лезвия ножниц.

Ещё пример чудачеств — H-образный двигатель, объединяющий в себе две рядные «пятёрки». Автор патента Луи Хернс полагает, что одну половину агрегата можно адаптировать под бензин, а другую — под метан и активировать их как врозь, так и вместе.

Даже беглый экскурс за пределы классических ДВС показал, сколь большое количество идей не находит массового воплощения. Роторы часто губит проблема износа уплотнений. Роторно-лопастные варианты вдобавок страдают от высоких знакопеременных нагрузок, разрушающих механизм связи лопастей и вала. Это только одна из причин, почему мы не встречаем такие «чудеса» на серийных автомобилях.

Вторая — в том, что и традиционные ДВС не стоят на месте. У последних бензиновых образцов с циклом Миллера термический КПД доходит до 40% даже без турбонаддува. Это много. У большинства бензиновых агрегатов — 20−30%. У дизелей — 30−40% (на крупных судах — до 50). А главное — глобальная альтернатива ДВС уже найдена. Это электромоторы и силовые установки на топливных элементах. Поэтому если изобретатели диковинок не решат все технические проблемы в самое ближайшее время, вырулить с обочины прогресса перед электричками они попросту не успеют.

Nissan разработала ДВС с изменяемой степенью сжатия / Хабр

Степень сжатия газообразной горючей смеси в цилиндре изменяется от 8:1 до 14:1



Двигатель VC-T. Изображение: Nissan

Японский автопроизводитель Nissan Motor представил новый тип бензинового двигателя внутреннего сгорания, который по некоторым параметрам превосходит продвинутые современные дизельные двигатели.

Новый двигатель Variable Compression-Turbo (VC-T) способен при необходимости изменять степень сжатия газообразной горючей смеси, то есть изменять шаг хода поршней в цилиндрах ДВС. Этот параметр обычно является фиксированным. Судя по всему, VC-T станет первым в мире ДВС с изменяемой степенью сжатия смеси.

Степень сжатия — отношение объёма надпоршневого пространства цилиндра двигателя внутреннего сгорания при положении поршня в нижней мёртвой точке (полный объём цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке, то есть к объёму камеры сгорания.

Повышение степени сжатия в общем случае повышает его мощность и увеличивает КПД двигателя, то есть способствует снижению расхода топлива.

В обычных бензиновых двигателях степень сжатия обычно составляет от 8:1 до 10:1, а в спортивных машинах и гоночных болидах может достигать 12:1 или больше. При повышении степени сжатия двигатель нуждается в топливе с бóльшим октановым числом.


Двигатель VC-T. Изображение: Nissan

На иллюстрации показана разница в шаге поршней на разной степени сжатия: 14:1 (слева) и 8:1 (справа). В частности, демонстрируется механизм изменения степени сжатия от 14:1 к 8:1. Он происходит таким образом.

  1. В случае необходимости изменить степень сжатия активируется модуль Harmonic Drive и сдвигает рычаг актуатора.
  2. Рычаг актуатора поворачивает приводной вал (Control Shaft на схеме).
  3. Когда приводной вал поворачивается, он изменяет угол наклона многорычажной подвески (Multi-link на схеме)
  4. Многорычажная подвеска определяет высоту, на которую каждый поршень способен подняться в своём цилиндре. Таким образом, изменяется степень сжатия. Нижняя мёртвая точка поршня, судя по всему, остаётся прежней.

Конструкция запатентована Nissan (

патент США № 6,505,582

от 14 июня 2003 года).

Изменение степени сжатия в ДВС можно в каком-то смысле сравнить с изменением угла атаки в винтах регулируемого шага — концепции, которая много десятилетий применяется в воздушных и гребных винтах. Изменяемый шаг винта позволяет поддерживать эффективность движителя близкой к оптимальной вне зависимости от скорости движения носителя в потоке.

Технология изменения степени сжатия ДВС даёт возможность сохранить мощность двигателя при соблюдении строгих нормативов к экономичности двигателя. Вероятно, это вообще самый реальный способ соблюсти эти нормативы. «Все сейчас работают над изменяемой степень сжатия и другими технологиями, чтобы значительно улучшить экономичность бензиновых двигателей, — говорит Джеймс Чао (James Chao), управляющий директор по Азиатско-Тихоокеанскому региону и консультант IHS, — По крайней мере последние двадцать лет или около того». Стоит упомянуть, что в 2000 году компания Saab показывала прототип такого двигателя Saab Variable Compression (SVC) для Saab 9-5, за который удостоилась ряда наград на технических выставках. Затем шведскую фирму купил концерн General Motors и прекратил работу над прототипом.


Двигатель Saab Variable Compression (SVC). Фото: Reedhawk

Двигатель VC-T обещают вывести на рынок в 2017 году с автомобилями марки Infiniti QX50. Официальная презентация назначена на 29 сентября на Парижском автосалоне. Этот двухлитровый четырёхцилиндровый двигатель будет обладать примерно такой же мощностью и крутящим моментом, что и 3,5-литровый двигатель V6, место которого займёт, но обеспечит экономию топлива 27%, по сравнению с ним.

Инженеры Nissan говорят также, что VC-T будет дешевле, чем современные продвинутые дизельные двигатели с турбонаддувом, и будет полностью соответствовать современным нормам на выбросы оксида азота и других выхлопных газов — такие правила действуют в Евросоюзе и некоторых других странах.

После Infiniti новыми двигателями планируется оснащать другие автомобили Nissan и, возможно, партнёрской компании Renault.

Двигатель VC-T. Изображение: Nissan

Можно предположить, что усложнённая конструкция ДВС в первое время вряд ли будет отличаться надёжностью. Есть смысл выждать несколько лет, прежде чем покупать автомобиль с двигателем VC-T, если только вы не хотите участвовать в тестировании экспериментальной технологии.

разное / картинки, гифки, прикольные комиксы, интересные статьи по теме.

Влияние диаметра цилиндра и хода поршня на характер двигателя

Сперва немного лирики: 

======

Производители не могут повышать мощность двигателей путем простого увеличения объема сразу по нескольким причинам:

-Требования к общему объему двигателя

-Законы, ограничивающие доступ к определенным объемам в зависимости от возраста и опыта вождения у водителей

-Стоимость страхования аппаратов с двигателями большего объема

-И еще черт знает какие

Кроме того, производители вынуждены убеждать потребителя, что их двигатель заданного объема лучший, а самый надежный способ добиться этого - превзойти конкурентов по скорости, динамике и внешнему виду. Есть несколько факторов, которые влияют на то, какова будет полученная от двигателя мощность, в первую очередь к этим факторам относят диаметр цилиндра и ход поршня.

======

Для простоты и условной точки отсчета мы воспользуемся конструкцией двигателя, в которой диаметр цилиндра равен ходу поршня. Назовем такую конструкцию "квадратной". Если увеличить ход и уменьшить диаметр до получения заданного объема двигателя, то полученная схема будет носить название "длинноходной", в то время как в другом предельном варианте может использоваться большой диаметр в комбинации с небольшим ходом для получения так называемой "короткоходной" схемы двигателя.

Длинноходная конструкция

Длинноходный двигатель отличается пологой характеристикой крутящего момента в широком диапазоне частот вращения двигателя. Крутящий момент является следствием достаточно большого плеча рычага, на котором прилагается усилие от длинного шатуна, и именно это позволяет длинноходному двигателю развивать высокое тяговое усилие при низких частотах вращения Если нарисовать кривую крутящего момента, то можно было бы отметить его незначительное увеличение по мере роста частоты вращения двигателя с достижением максимума, после которого момент начинает понижаться. Учитывая то, что двигатель наиболее эффективно работает при максимальном крутящем моменте, становится очевидным, что желательно иметь максимально пологую характеристику крутящего момента. В этом отношении длинноходный двигатель превосходит другие. Где длинноходный двигатель проигрывает, так это в общем запасе мощности, измеряющемся в эффективной мощности. Она очень мала при низких частотах вращения двигателя, резко возрастает по кривой и снижается только при очень высоких скоростях. Для получения максимальных мощностных показателей необходим двигатель, работающий с максимально возможной частотой вращения, и в этом случае длинный ход менее удобен: высокая скорость поршня налагает ограничение, при превышении которого происходит или повреждение, или ускоренный износ двигателя, а это, в свою очередь, ограничивает запас располагаемой мощности

Короткоходная конструкция

Короткоходный двигатель может работать при более высоких скоростях, чем длинноходный того же объема, и, следовательно, за определенный промежуток времени происходит большее количество рабочих ходов (повышается мощность). Недостаток заключается в том, что меньший ход означает уменьшение плеча рычага коленчатого вала, а это, в свою очередь, приводит к менее пологой характеристике крутящего момента. Таким образом, короткоходные двигатели более мощные, но в узком диапазоне частот вращения двигателя. 

Компромисс

Как вы,  догадывались, наилучший вариант - в компромисс между двумя этими крайностями, а именно - "квадратный" двигатель, описанный ранее. На практике многие современные мотоциклетные двигатели близки к "квадратной" схеме с небольшими отклонениями, обусловленными конкретными требованиями к их использованию. Хотя с популярностью спортбайков число короткоходных двигателей возросло, для того чтобы обеспечить потребителей тем уровнем мощности, который им хочется иметь на бумаге

Вот график зависимости мощности двигателей разных схем в зависимости от количества оборотов:

Красная кривая – характеристика «короткоходного» двигателя: высокая мощность в узком диапазоне высоких оборотах
Зеленая кривая – характеристика «длинноходного» двигателя: мощность и крутящий момент достигает при не высоких оборотах, внушительная эластичность двигателя
Черная кривая – «золотая середина» «квадратного» двигателя.

Увеличение рабочего объема двигателя

Одним из самых лучших видов доработок, которые можно провести с двигателем внутреннего сгорания, является увеличение его рабочего объема.

Рабочий объем цилиндра, это часть объема цилиндра находящаяся между нижней мертвой точкой поршня и верхней мертвой точкой. Соответственно рабочий обем двигателя это сумма всех рабочих объемов цилиндров двигателя.

Полезность увеличения рабочего объема двигателя.

1.При увеличении объема ресурс практически не изменяется, так как не увеличивается литровая мощность двигателя.
2.Крутящий момент увеличивается во всем диапазоне оборотов, двигатель становиться более тяговитым и может эксплуатироваться на меньших оборотах.
3.Появляется больший резерв мощности для дальнейшего тюнинга.


Некоторые моменты которые нужно учитывать при увеличении рабочего объема двигателя.

1.При увеличении объема система впуска и выпуска уже не будет также хорошо справляться с наполнением цилиндров и отведением выхлопных газов. Двигатель становиться более низовым, так как на высоких оборотах система впуска не будет успевать полностью наполнять цилиндры.

2.Установленный до этого верховой распредвал сместит ниже пик максимального момента.

Методы увеличения рабочего объема двигателя.

Рабочий объем можно повысить тремя способами.

1 Увеличить диаметры цилиндров путем расточки блока или гильз цилиндров и установки других комплектов поршней и колец. При этом двигатель получается более верховой так как диаметр поршня увеличили, а ход поршня остался на прежнем уровне. Соотношение диаметра поршня к ходу цилиндра сместилось в сторону увеличения диаметра цилиндра. Такая схеме лучше поддается форсировке по увеличению рабочих оборотов двигателя. мощность и крутящий момент увеличивается за счет увеличения поверхности поршня на которую воздействует давление, образуемое при сгорании топлива.

2 Увеличить ход поршня. Здесь уже понадобиться заменить коленвал на более длинноходный, и на такую же величину уменьшить суммарную длину поршня с шатуном. Достигается это, либо установкой новых поршней со смещенным отверстием вверх, под поршневой палец, либо установкой более коротких шатунов. Есть еще вариант замены блока цилиндров на более высокий. Двигатель получается более низовой и с большим крутящим моментом в рабочем диапазоне оборотов. Прибавка мощности и крутящего момента достигается за счет увеличения рычажности коленчатого вала. (Толкающее давление поршня воздействует на более длинную шейку коленчатого вала) Необходимо учитывать что при установке длинноходного коленвала увеличиваются углы работы шатуна. Это в свою очередь увеличивает боковое давление поршня на стенки цилиндра, что значительно уменьшает ресурс шатунно поршневой группы при очень длинноходном коленвале.

3 Третий способ сочетает в себе оба способа описанные выше. При увеличении диаметра цилиндров и увеличении хода поршня можно максимально увеличить рабочий объем двигателя. Хотя это и очень дорогостоящий вид тюнинга, зато на этом этапе происходит как бы заложение фундамента под дальнейшее модифицированеие вашего двигателя, ведь ни кто еще не отменял поговорку "ни что не заменит кубические сантиметры"

  Читать другие тюнинг статьи        
  Тюнинг подкапотного пространства
  облегчение автомобиля        
  улучшение аэродинамики
  Фильтр пониженного сопротивления

Объем двигателя, мощность и крутящий момент. Что это?

Производители автомобилей указывают определенные характеристики двигателя в своих рекламных брошюрах и руководствах по эксплуатации. Это важная информация для пользователя, и прежде всего для потенциального покупателя данного автомобиля, так как из этих, казалось бы, неинтересных цифр можно сделать далеко идущие выводы.

Объем двигателя хорошо известен всем пользователям автомобилей. Эту информацию можно найти в рекламных брошюрах и руководствах по эксплуатации транспортных средств.В качестве одной из характеристических данных двигателя он вносится в свидетельство о регистрации транспортного средства.

Рабочий объем

Объем двигателя является геометрической величиной. Это объем цилиндра, в котором движется поршень двигателя. Объем цилиндра – это произведение площади поперечного сечения цилиндра на ход поршня. Для многоцилиндрового силового агрегата рабочим объемом является сумма объемов отдельных цилиндров. В каталогах чаще всего указывается объем цилиндров в кубических сантиметрах.

Однако в практике проектирования мощность, а точнее ход поршня и его диаметр, определяют из расчетов, в которых принимается конкретная мощность двигателя с учетом размерных зависимостей, соответствующих данной группе двигателей. Во всех двигателях, используемых для движения автомобилей, важное значение имеет отношение хода поршня к диаметру цилиндра и отношение радиуса кривошипа к длине шатуна. Первое частное определяет высоту и длину двигателя, его массу и среднюю скорость движения поршня.Важно отметить, что в практике эксплуатации за счет уменьшения хода поршня при сохранении постоянного диаметра цилиндра достигается уменьшение средней скорости движения поршня. Меньшая скорость движения поршня в цилиндре положительно сказывается на увеличении продолжительности ремонтных периодов двигателя. Больший диаметр цилиндра позволяет более выгодно расположить седла клапанов. Отношение хода поршня к диаметру цилиндра находится в пределах 0,85 - 1,00.

Крутящий момент

Второй важной информацией, характеризующей двигатель, является значение максимального крутящего момента, который может развить приводной агрегат.Это показатель потенциала автомобиля для ускорения и гибкости. Значение крутящего момента изменяется в зависимости от скорости вращения коленчатого вала. По мере увеличения оборотов двигателя крутящий момент увеличивается, но только до определенного предела, затем, несмотря на увеличение оборотов, значение крутящего момента уменьшается. В эксплуатации важно, чтобы относительно высокий крутящий момент сохранялся в широком диапазоне оборотов двигателя, что делает двигатель гибким, поскольку он обеспечивает плавную езду без частого переключения передач.Крутящий момент двигателей внутреннего сгорания измеряется в лабораторных условиях с помощью специальных приборов, называемых тормозами. Его значение указано в ньютон-метрах (Нм). Значения крутящего момента, получаемого двигателями легковых автомобилей, составляют от 47 до 700 Нм и зависят от мощности, рабочего объема и других конструктивных особенностей двигателя.

Мощность

Третьей величиной, характеризующей двигатель, является мощность. Мощность двигателя – это работа, производимая в единицу времени давлением газов, действующих на днище поршня.Для многоцилиндровых двигателей это сумма мощностей цилиндров, входящих в силовой агрегат. Для водителя интересна полезная мощность. Это мощность, которая может передаваться на приемник при любых условиях работы двигателя.

Номинальная мощность гарантируется производителем привода для указанных условий эксплуатации. Для двигателей легковых автомобилей номинальная мощность равна максимальной мощности, т. е. мощности, которую двигатель может развивать при постоянной нагрузке в течение заданного периода времени, не опасаясь превышения допустимой механической нагрузки или перегрева.Максимальное значение мощности указано в большинстве брошюр и технических данных для легковых автомобилей. Как и крутящий момент, мощность также зависит от частоты вращения двигателя.

.90 000 Сборка основного вагона - 90 001

Основной

ХХ век - век атома и космических путешествий - это также век бурного развития автомобилестроения. Наблюдая на улицах и дорогах тысячи автомобилей различного назначения, трудно представить себе экономику современной страны без автомобильного транспорта, без машин скорой помощи, пожарных машин, автоцистерн и многих других автотранспортных средств. И все же, хотя создание транспортного средства, которое движется само по себе, долгое время было мечтой дизайнера, история настоящего автомобиля с полезной ценностью восходит к началу этого века.Первые попытки сконструировать транспортное средство, которое передвигалось своим ходом, предпринимались гораздо дольше. В 1600 году в Брюсселе Симон Стевин построил первое парусное судно. Менее чем через сто семьдесят лет - в 1769 году - француз Миколай Юзеф Кюньо сконструировал первый автомобиль с паровым двигателем. Своего очага у этой машины еще не было и для того, чтобы нагреть пар, нужно было разводить костер на земле под котлом. В последующие годы был создан ряд более или менее удачных паровых конструкций, конкуренцию которым электромобили стали составлять во второй половине XIX века.Автомобиль с бензиновым двигателем внутреннего сгорания был впервые построен в 1875 году Зигфридом Маркусом, но первый коммерческий автомобиль с бензиновым двигателем мощностью 0,55 кВт, высоковольтной системой зажигания и цепным приводом на задние колеса был построен только через десять лет. Кароль Бенц. 1885 – 1886 годы – прорывы в развитии автомобилестроения. Гот-либ Даймлер и Кароль Бенц после репетиции со своим первым «Настоящие автомобили», они основали две конкурирующие фабрики, позже известные своей продукцией во всем мире.В то же время автомобильная промышленность развивается во многих странах. Во Франции основаны компании Panhard-Levassor (1887), de Dion-Bouton и Peugeot. Чуть позже — только в 1894 году — создается первый американский производитель автомобилей — Duryea Motor Wagon Company. Вскоре после этого были основаны заводы Oldsmobil и Детройтская автомобильная компания, основанная Генри Фордом. Несмотря на сомнительную полезность выпускаемых в то время автомобилей, развитие автомобилестроения на рубеже 20-го века характеризуется исключительным динамизмом.Результаты спортивных мероприятий, проводившихся в то время, являются лучшим доказательством сооружений того времени. Первый мировой рекорд скорости, установленный в 1902 году на автомобиле с двигателем внутреннего сгорания (предыдущие принадлежали паровым или электрическим автомобилям), составил уже 122,4 км/ч. В 1909 году автомобиль Бенца превысил скорость 200 км/ч. Это, конечно же, было связано с постоянным совершенствованием конструкции автомобиля и методов производства. В Польше автомобильная промышленность стала развиваться намного позже.Первые польские образцы были созданы в Центральной автомобильной мастерской (ЦАМ), основанной в 1921 году. Они были построены инж. Легковые автомобили Тадеуша Танского CWS-T1 и CWS-T2. Однако серийно эти автомобили не выпускались. В 1926 году завод Урсус, производивший до сих пор двигатели внутреннего сгорания для сельского хозяйства, покупает лицензию итальянских грузовиков SPA и начинает выпуск 2-тонного грузовика под названием Урсус - тип А. Также в Урсусе в 1930 году запускается производство двигателей на основании лицензии компании Saurer.Эти двигатели устанавливались на импортные шасси той же фирмы. С 1928 года Ursus организационно входит в состав Państwowe Zakłady Inżynierii (PZInż), которое также производит легковые и грузовые автомобили по лицензии итальянской компании FIAT. Это пассажирские модели 508-III и 518, а также грузовые модели 621 и 618. На базе этих моделей на ПЗИнж было изготовлено множество производных вариантов, в том числе 20-местный автобус. В 1935-1939 годах было разработано много польских конструкций. Это были: прототип большого легкового автомобиля типа LS, прототип грузового автомобиля грузоподъемностью 4,5 тонны, автомобильные двигатели типа 403 и типа 705, мотоциклы Sokół 200, Sokół 600, M-lll и другие.В июле 1939 года началось расширение заводов с целью выпуска 10 000 грузовиков в год. Однако все эти достижения были уничтожены во время войны. После войны польскую автомобильную промышленность пришлось восстанавливать с нуля. Для восстановления разрушенной страны были необходимы все виды транспорта, особенно автомобили. Еще в 1946 году было принято решение о запуске производства грузовика собственной разработки. Под наблюдением инженера Яна Вернера в Лодзи и Варшаве готовится документация грузового автомобиля с грузоподъемностью. 3,5 т, отмечен символом Star 20.Тот факт, что первые 10 автомобилей были выпущены в Стараховицах в 1948 году, несмотря на крайне тяжелые условия, доказывает необычайное усилие, энтузиазм и высокое мастерство людей, строивших в те годы нашу автомобилизацию. Регулярное производство Starów началось в 1949 году. Три года спустя - в 1951 году - на только что построенном заводе Samochodow Osobowych в Варшаве была собрана пробная серия автомобилей FSO Warszawa, строительство которых велось по советской лицензии. В том же году в Люблине началось производство 2,5-тонных грузовиков FSC Lublin, также по советской лицензии, Дальнейшее развитие польской автомобильной промышленности включает в себя не только модернизацию заводов в Стараховицах, Варшаве и Люблине, но и запуск новых заводов, таких как Sanocka Fabryka Autobusów, Jelczańskie Zakłady Samochodowe, Завод транспортных средств доставки в Нысе, Fabryka Mechanizmów Samochodowych в Щецине и многие другие.На смену Old 20 пришли Star 21, Star 25, Star 27, Star 28 и 29 и Star 200. В то же время семейство Star пополнилось множеством производных конструкций, таких как саморазгружающиеся грузовики, тягачи, цистерны, фургоны. , автобусы и др. Был построен внедорожник Star 66, а затем его более новые варианты - Star 660M1 и Star 660M2. В настоящее время выпускается современный внедорожник Star 266. Разработка лицензионной Варшавы, помимо модернизации базовой машины (верхнеклапанный двигатель, измененный кузов и т.), дали целый ряд производных автомобилей - машины скорой помощи, микроавтобусы (Ныса), микроавтобусы (Жук) и т.д. Автобусы San, Jelcz и Sanok, автомобили большой вместимости A80 и Jelcz 315, популярный легковой автомобиль Syrena – следующие этапы развития нашего автомобилестроения. Каждая из этих машин производилась в разных вариантах и ​​постепенно модернизировалась. На базе автомобиля Jelcz 315 было создано семейство автомобилей большой вместимости — десятитонный Jelcz 316 с дополнительной поддерживающей третьей осью, седельный тягач Jelcz 317, автоцистерна и многие другие.Покупка лицензии на легковой автомобиль Polski Fiat 125p в Италии в 1965 году имела большое значение для развития польского автопрома. Приобретение этой лицензии вместе с современной технологической документацией и станочным парком привело к модернизации не только Варшавского FSO, но и многих сотрудничающих с ним небольших автомобильных заводов. Польский Fiat 125p стал символом современности польского автомобилестроения. Экспортируется во многие страны, собирается польскими командами в Югославии, он также является предметом постоянной разработки дизайнеров FSO.На его базе выпускались версии универсал и пикап, а также скорая помощь. Было много модернизационных изменений кузова и шасси. Широкие возможности экспорта и сотрудничества (особенно с Югославией), связанные с производством польского Fiat 125p, стали стимулом для еще более быстрого развития польской автомобильной промышленности. В 1971 году с заводами FIAT было подписано лицензионное соглашение на производство популярного польского автомобиля Fiat 126p, предназначенного для самой широкой аудитории. Polskie Fiaty 126p производится на недавно построенных заводах в Бельско и Тыхах.В настоящее время они являются самыми популярными автомобилями на наших дорогах. В рамках соглашения с заводами FIAT сборка других автомобилей этой фирмы (из импортных деталей) была налажена в Польше в 1971-76 гг. Польские автомобили Fiat 127p собирались на Fabryka Samochodow Małolitrażowych в Бельско, а польские автомобили Fiat 128p, 131p и 132p - на FSO в Варшаве. При этом продолжаются работы по модернизации выпускаемых моделей и подготовке новых. Конструкторы ФСО совместно со специалистами FIAT finny разработали новую модель легкового автомобиля под названием «Полонез».Его производство началось в 1978 году, не прерывая производства польского Fiat 125p. Polonez — автомобиль с совершенно новым кузовом, полностью отвечающим современным тенденциям развития в плане эстетики и эргономики, а также пассивной безопасности. Пять версий двигателя в разработке, улучшенное шасси и очень тщательная антикоррозийная защита делают «Полонез» вполне современным автомобилем, который может успешно конкурировать с автомобилями известных европейских компаний.Особенно динамичное развитие автомобильной промышленности в последнее десятилетие затронуло также грузовые автомобили и автобусы. В 1972 году было заключено лицензионное соглашение с французской компанией Berliet на производство автобусов большой вместимости. В Елчанских заводах Самоходове была начата сначала сборка автобусов Jelcz-Berliet PR 100 французской постройки, а затем производство автобусов Jelcz-Berliet PR 110, сконструированных совместно польскими и французскими специалистами.Эти автобусы вместе с современными Autosan H9 из Санока, способствовал полной модернизации подвижного состава предприятий связи.Одновременно с сотрудничеством с французской компанией Berliet Jelczańskie Zakłady Samochodowe установили контакт с австрийской компанией Steyr. В результате этого сотрудничества в Елче создается современное семейство крупнотоннажных автомобилей Jelcz-Steyr. Завод грузовиков в Стараховицах наладил сотрудничество со шведской компанией Volvo. Завод по производству сельскохозяйственных автомобилей Tarpan был основан в Антонинеке недалеко от Познани. Семейство новых фургонов производится на Заводе грузовых автомобилей в Люблине.Фургон «Ныса» производства FSD в Нысе проходит модернизацию. И ведь польский автопром — это не только автомобили. Мы также производим мотоциклы и мопеды, широкий ассортимент автомобильных прицепов, созданы заводы, специализирующиеся на производстве агрегатов, таких как коробки передач (Тчев), рулевые механизмы и карданные валы (Щецин), амортизаторы (Кросно) и другие. Развитие производства идет рука об руку с развитием автомобильной техники – СТО, ремонтных заводов и т.д.Столь значительное развитие автомобилестроения в Польше тесно связано с общим экономическим развитием страны и является его необходимой составляющей. Важно понимать, что автомобиль — это средство сообщения, которое проходит там, где нет ни железной дороги, ни самолета. Никакие другие транспортные средства не могут выполнять задачи, которые выполняют автомобили, например, в строительстве, торговле или связи. Сегодня легковые автомобили и автобусы вносят больший вклад в решение сложных коммуникационных задач, чем железные дороги и авиация.Поэтому степень «автомобилизации» страны в настоящее время является одним из основных показателей экономического уровня общества. Наряду с развитием автомобилестроения наблюдаются изменения в конструкции транспортных средств с целью улучшения их эксплуатационных возможностей и повышения комфорта и безопасности использования. Увеличивается грузоподъемность грузовых автомобилей, увеличивается количество разновидностей автомобилей, приспособленных к специализированному транспорту и для выполнения строго определенных задач. Цель – максимально увеличить межремонтный пробег, упростить и сократить количество необходимых работ по техническому обслуживанию, сократить время погрузочно-разгрузочных работ.Эти тенденции проявляются, в том числе, в повышении долговечности узлов, устранении узлов, требующих периодической смазки, применении саморазгружающихся и автоматических погрузочных машин, применении контейнеров и т. д. Наряду со стремлением к улучшению эксплуатационных свойств автомобилей все больше внимания уделяется обеспечению максимальной безопасности и комфорта вождения. Поэтому особое значение приобретают проблемы надежности тормозной и рулевой систем, устойчивости движения автомобиля, конструкции кузова, обеспечивающей максимальную безопасность в случае аварии.Обязательно использование ремней безопасности, разработаны более эффективные фары, направленные на устранение ослепления водителей встречных транспортных средств. Забота об улучшении ездового комфорта проявляется, прежде всего, в разработке конструкции подвесок, сидений, улучшении шумоизоляции и т. д. Не так давно к ездовому комфорту относились как к привилегии легковых автомобилей, учитывая, что в грузовых является второстепенным делом. Развитие автомобильных перевозок дальнего следования повлекло за собой необходимость обеспечения наилучших условий труда водителя и комфорта пассажиров.Стало очевидным, что вопросы комфорта и, следовательно, снижения утомляемости водителя тесно связаны с вопросами безопасности дорожного движения. Поэтому в современных автомобилях им придается большое значение.

.

MA520 Ход молота: 43 мм

MA520 Ход молота: 43 мм — ADLER (MA520)

Этот веб-сайт использует файлы cookie. Узнайте больше о целях их использования и возможности изменения настроек файлов cookie в вашем браузере. Подробнее...

Закрой его

Описание продукта

Свойства и использование:
  • Пневматический ударный молот широко используется в строительстве, ремонте, монтаже и т.д.
  • Разнообразные насадки и наконечники обеспечивают эффективность при обработке многих видов материалов, в том числе поверхностей, покрытых ржавчиной, краской, окалиной
  • Эргономичный дизайн, удобный захват и малый вес значительно облегчают работу с
  • .
  • Преимущества модели AD-520 - прочный металлический корпус и удобная прорезиненная ручка
  • Большим преимуществом также является большое количество ударных ударов при относительно низкой потребности в сжатом воздухе
Технические характеристики:
Параметр Значение Единица измерения
Максимальное рабочее давление 6.3 бар
Количество ударов 4300 стр/мин
Длина хода поршня 43 мм
Длина стамесок в наборе 125 мм
Среднее потребление воздуха 100 л/мин
Вес 1.1 кг
Код продукта МА520

Доступность является информативной на основе данных ADLER и может отличаться от фактического состояния.Перед покупкой, пожалуйста, свяжитесь с нами, чтобы подтвердить текущий уровень запасов.

Końcówka zbijaka do rdzy AD-MAB97 - ADLER (MAB97) Наконечник молотка для ржавчины AD-MAB97 - ADLER (MAB97) 71,11 зл. Ściernica płaska do przecinania ECO-LINE, typ 41 - 125MM x 1MM x 22,2MM - ANDRE (010167) Отрезной круг ECO-LINE, тип 41 - 125 мм x 1 мм x 22,2 мм - ANDRE (010167) 2,72 зл. Szczypce uniwersalne, długość: 180MM - NEO TOOLS (01-011) Пассатижи, длина: 180 мм - NEO TOOLS (01-011) 39,67 зл.

Загрузка...

.

Dezamet Motorydwan тип 755 - мопеды на www.jacomoto.pl

Фабрика Dezamet в поисках новых точек сбыта построила машину для доставки.
Одним из конструкторов этого автомобиля был г-н Кшиштоф Павечак.
Рама была новой конструкции, но привод был б/у Мы уже знаем двигатели Dezamet 027, известные по Cart, объемом 50 или 70 куб.см и 051 мощностью 125 куб.см, известные по мотоциклу WSK. Оба двигателя снабжены нагнетателем для улучшения проходимости.
Было несколько разновидностей кузова, от открытых до закрытых, напоминающих итальянские фургоны Piaggio
Отдельные разновидности имели последовательную маркировку 755, 755.1 и т. д. Различная длина, кузов, версии двигателя, грузоподъемность и т. д.
Motorydwan также использовался для создания инвалидной коляски под торговой маркой Mink .

Технические данные:
Двигатель:
Тип 027.3 Изготовлено Двухцилиндровый одноцилиндровый, с обратной промывкой, дезамет, воздушное охлаждение с помощью вентилятора принудительной продувки. Рабочий объем 49,8 см3, диаметр цилиндра 38 мм, ход поршня 44 мм, коэффициент промывки 8. Мощность 1,5 кВт при 5000 об/мин.Максимальный крутящий момент 3,0 Нм при 4000 об/мин
Ганик для версии 027.3:
уровней тип 14 MC или Bing 14/14/206 тип SRE
или
Тип 027.4 Одноцилиндровый, двухтактный, с обратной промывкой, вентилятор принудительного воздушного охлаждения. Рабочий объем 69,8 см3, диаметр цилиндра 45 мм, ход поршня 44 мм, мощность 2,0 кВт (2,8 л.с.) при 5200 об/мин и коэффициент омывания 8. Максимальный крутящий момент 3,5 Нм при 5600 об/мин.
Ганик для версии 027.4:
горизонтальный тип 14MC или Bing 1/14/208 тип SRE
Редуктор:
трехступенчатая, сблокированная с двигателем. Переключение передач. Замыкающие шестерни N-1-2-3.
Передаточное отношение и максимальная скорость на различных передачах:
1-я передача 2:07, 25 км/ч
2-я передача 1:52, 45 км/ч
3-я передача 1:03, 45 км/ч
Sprzego:
мокрый трехдисковый трение в масляной ванне

или двигатель 125см3:
тип 051 производства Dezamet одноцилиндровый двухтактный с обратной промывкой, воздушного охлаждения с принудительной наддувкой нагнетателями.Рабочий объем 123,0 куб. см, диаметр цилиндра 52 мм, ход поршня 58 мм, коэффициент промывки 7,5. Мощность 4,2 кВт при 5600 об/мин. Максимальный крутящий момент 8,5 Нм/4000 об/мин.
Ганик:
уровня Bing DRA 18.08.105
Коробка передач:
трехступенчатая, закрепленная на двигателе. Переключение передач.
Sprzego:
мокрый трехдисковый фрикционный в масляной ванне

Привод для всех двигателей:
цепной с дифференциалом, передаточное число 14:44.

Шасси:
трубчатая рама, передняя подвеска, толкающий рычаг - амортизация с двумя телескопами, задняя подвеска - продольный рычаг, амортизированный двумя резиновыми элементами.

Koa:
Шины 4.40-10/4PR D56

Тормоза:
барабан, рулевое управление - ручное - переднее, нет
Электромонтаж:
Генератор 6 В / 45 Вт, разъем F100,
или 12 В / 110 Вт, разъем F100

Емкость:
топливный бак 5dccm,

Вес: в зависимости от версии

Допустимая нагрузка в зависимости от версии

Расход топлива:
3,2 dccm / 100km

.

Машинный домкрат Seproduo Claw (грузоподъемность: 2,5 / 5 т, ход поршня: 120 мм) 08775962 2

Домкраты предназначены для подъема оборудования, тяжелых конструкций, а также для ремонтных, монтажно-демонтажных, транспортно-складских работ и т.п. Оснащены захватами, позволяющими поднимать предметы в ситуациях, когда имеется лишь небольшой люфт.

Домкраты оснащены возвратными пружинами, которые позволяют поршню быстро возвращаться в исходное положение.Имеют встроенный насос со съемной ручкой. Для переноски и установки предусмотрены ручки.

Подъемный захват в два раза больше общей грузоподъемности

Примечание. Безопасный подъем груза на захвате составляет 50 мм. Дальнейший подъем может деформировать поршень. Для более безопасного подъема груза на захват на более высокий ход поршня следует использовать несколько домкратов, обеспечивающих равномерное распределение нагрузок на поршни.

Преимущества домкратов:

  • Быстрая, простая и легкая ручная работа.
  • Можно поднимать за «лапу» или «голову» для дополнительной универсальности.
  • Клешня изготовлена ​​из нержавеющей стали методом литья, без сварки и гибки, что обеспечивает высокую прочность и долговечность.
  • Малая высота подъема позволяет работать в ограниченном пространстве.
  • Прочная возвратная пружина позволяет быстро вернуть «лапу» в исходное состояние.
  • Узел рукоятки насоса имеет поворотный механизм, который позволяет оператору получать доступ к насосу с разных сторон.
  • Встроенный предохранительный клапан защищает от избыточного давления.
  • Внутренний перепускной клапан действует как ограничитель хода.
  • Удобная ручка для переноски.

Категория Seproduo включает в себя семейство подъемников с различными параметрами.
Найдите другие подъемники, набрав вверху в поисковой системе Seproduo.

Акция! «Бесплатная доставка по всей стране»
Таким образом, мы доставляем этот товар бесплатно в любую точку Польши.
"Большинство товаров отгружаются в течение 24 часов после проверки наличия на складе!"
После заказа (в рабочее время) сотрудники склада проверяют наличие заказанного товара на складе и отвечают по электронной почте или по телефону.

Сделать фотографии купленного товара. 10 фото - скидка 200 злотых, 15 фото - скидка 300 злотых.
За каждую фотографию, представленную на сайте магазина, вы получите 20 злотых.
Фотографии отправляются на адрес электронной почты: с номером нашего заказа и номером счета.

.

ПОРШЕНЬ + ЦИЛИНДР T1 1,3 л BOXER -7/70 ОРИГИНАЛ (НАРУЖНЫЙ ДИАМЕТР СО СТОРОНЫ БЛОКА 90 ММ, ДИАМЕТР СО СТОРОНЫ ГОЛОВКИ 90 ММ, ДИАМЕТР 77 ММ, ХОД ПОРШНЯ 69 ММ)

»Главная »ПОРШЕНЬ + ЦИЛИНДР T1 1.3L BOXER -7/70 ОРИГИНАЛ (НАРУЖНЫЙ ДИАМЕТР СО СТОРОНЫ БЛОКА 90 ММ, ДИАМЕТР СО СТОРОНЫ ГОЛОВКИ 90 ММ, ДИАМЕТР 77 ММ, ХОД ПОРШНЯ 69 ММ)

ПОРШЕНЬ + ЦИЛИНДР T1 1.3L BOXER -7/70 ОРИГИНАЛ (НАРУЖНЫЙ ДИАМЕТР СО СТОРОНЫ БЛОКА 90 ММ, ДИАМЕТР СО СТОРОНЫ ГОЛОВКИ 90 ММ, ДИАМЕТР 77 ММ, ХОД ПОРШНЯ 69 ММ)

злотых
Цена: 1.216.00
код: 000020
номер телефона: 111 198 057Б
ббт: ББТ1719
шт.: набор
текущий статус: в наличии
категория: »Двигатель» Поршни, цилиндры »Стандарт

в корзину

в кладовую

У вас есть вопрос по этому товару?

Имя и фамилия
адрес электронной почты
Ваш вопрос
.

Двигатель LC170FS [LC170FS]

Компания TEC-POL Sp. о.о. как представительство Loncin Motor Co.Ltd в Польше, дает гарантию на мотор LONCIN сроком на 24 месяца (индивидуальные клиенты, частные пользователи) или 12 месяцев (компании, коммерческая гарантия) со дня покупки.

1. Компания гарантирует бесперебойную работу изделия в соответствии с техническими условиями, описанными в инструкции.

2.Гарантия предусматривает бесплатный ремонт и доставку деталей в течение 24 или 12 месяцев (в зависимости от типа гарантии, индивидуальных или коммерческих клиентов) с момента покупки в соответствии с условиями, изложенными в данной карте.

3. Гарантия не распространяется на платное обслуживание оборудования, осмотры, регулировки, расходные материалы такие как свечи, фильтры и т.д.

4. Ремонт по гарантии не распространяется на детали и материалы, расходуемые естественным путем.

5. Гарантия не предоставляется, если оборудование использовалось не по назначению, то есть в коммерческих, профессиональных целях или в целях сдачи в аренду.

6. Основанием для получения гарантийной защиты является оригинал чека о покупке вместе с настоящим гарантийным талоном.

7. Убедитесь, что документ, подтверждающий покупку, т. е. квитанция или счет-фактура, заполнен правильно, без помарок или исправлений, и что они содержат точное описание или символ, позволяющий однозначно идентифицировать оборудование.

8. Использование продукта должно осуществляться в соответствии с инструкцией по эксплуатации, прилагаемой к продукту. Компания TEC-POL Sp.z.o.o. освобождается от ответственности по гарантии за дефекты, вызванные неправильным использованием и выполнением ремонта и переделки неуполномоченными лицами.

9. Настоящая гарантия распространяется на дефекты, вызванные дефектами материалов и сборки.

10. Товар должен быть доставлен непосредственно в гарантийный сервис с действительным доказательством покупки, все расходы, связанные с транспортировкой, страхованием и другими рисками, несет покупатель.

11. Дефекты, выявленные в течение гарантийного срока, будут устранены в срок, согласованный сторонами, не более 30 дней с момента сдачи оборудования в сервис. Гарантийный срок продлевается на количество дней нахождения машины в сервисном центре.

12. Заказчик имеет право заменить оборудование на новое, если: устранение дефекта невозможно.

13. В случае невозможности замены оборудования на новое Заказчик имеет право на возврат уплаченной суммы.

14. Гарантия не распространяется:

• несчастные случаи при транспортировке и погрузочно-разгрузочных работах и ​​связанные с ними повреждения,

• неисправности или повреждения, вызванные неправильным использованием или злоупотреблением продуктом, небрежностью покупателя или использованием продукта не в соответствии с инструкцией по эксплуатации или правилами техники безопасности,

• механические повреждения товара и вызванные ими дефекты,

• неисправность или повреждение в результате пожара, наводнения, молнии или других стихийных бедствий,

• война или социальные волнения, непредвиденные происшествия,

• продукты, которые не уполномочены TEC-POL Sp.о.о. (включая Клиента) нарушены каким-либо образом или в которых они модифицировали, изменили или отремонтировали,

• продукты, для которых гарантийные документы или идентификационный номер были изменены, стерты или стерты каким-либо образом.

15. Любые дефектные продукты или замененные детали становятся собственностью TEC-POL Sp. о.о.

.

Смотрите также