Для чего предназначен двигатель


Как работает двигатель внутреннего сгорания

В данной статье мы расскажем об устройстве двигателя, его компонентах, о том, как они работают вместе, какие могут возникнуть неполадки и как увеличить производительность.

 
Содержание статьи
 

  1. Введение
  2. Внутреннее сгорание
  3. Устройство двигателя
  4. Неполадки двигателя
  5. Клапанный механизм и система зажигания двигателя
  6. Системы охлаждения, воздухозабора и запуска двигателя
  7. Читайте также » Системы смазки, подачи топлива, выхлопа и электросистема двигателя
  8. Увеличение мощности двигателя
  9. Часто задаваемые вопросы по двигателям
  10. Чем 4-цилиндровый двигатель отличается от V-образного шестицилиндрового двигателя?
  11. Узнать больше
  12. Читайте также Статьи про все типы двигателей
 
 
Бензиновый автомобильный двигатель предназначен для преобразования энергии бензинового топлива для движения автомобиля. В настоящий момент самым простым способом привести автомобиль в движение является сгорание бензина в двигателе. В связи с тем, что двигатель автомобиля является двигателем внутреннего сгорания, сгорание топлива происходит внутри двигателя.
 
На заметку:
 
  • Существуют различные типы двигателей внутреннего сгорания. Каждый из них имеет свои преимущества и недостатки.
  • Также существуют и двигатели внешнего сгорания. Паровые двигатели в поездах старого образца и пароходах являются наглядным примером двигателей внешнего сгорания. В паровых двигателях топливо (уголь, дрова, масло и т.д.) сгорает вне двигателя для получения пара, который уже приводит двигатель в движение. Внутреннее сгорание является более эффективным (расход топлива на 1км значительно ниже) чем внешнее сгорание, помимо этого размеры двигателей внутреннего сгорания намного меньше двигателей внешнего сгорания. Именно поэтому нам не встречаются автомобили Ford или GM на паровых двигателях.
 
Внутреннее сгорание
 
Принцип работы любого поршневого двигателя внутреннего сгорания: Если поместить небольшой объем высокоэнергетического топлива (например, бензина) в небольшой закрытый сосуд и воспламенить, то в результате высвободится огромное количество энергии в виде расширяющегося газа. Этой энергии хватит для запуска картофелины на 1510м. В данном случае энергия используется для движения картофелины. Данную энергию можно использовать в более интересных целях. Например, если у Вас получится создать цикл, который позволит производить взрывы с частотой несколько сотен раз в минуту, и если Вам удастся эффективно использовать данную энергию, то Вы получите основную часть автомобильного двигателя!
 

 

Рисунок 1
 
На сегодняшний день практически во всех автомобилях используется так называемый четырехтактный цикл сгорания для преобразования энергии топлива в механическую энергию. Четырехтактный принцип работы также называют Цикл Отто, в честь Николауса Отто, который изобрел его в 1867г. Все четыре такта представлены на рисунке 1. Эти такты:
 

  • Такт впуска
  • Такт сжатия
  • Рабочий такт
  • Такт выпуска
 
На рисунке видно, что в картофельной пушке картофелина заменена устройством, которое называется поршень. При помощи шатуна поршень соединяется с коленчатым валом. При вращении коленвала создается эффект "перезарядки пушки". Во время цикла в двигателе происходят следующие процессы:
 
  1. Поршень начинает движение сверху, впускной клапан открывается, поршень движется вниз для наполнения цилиндра воздухом и бензином. Это такт впуска. На данном этапе для смеси топлива и воздуха требуется лишь небольшое количество бензина. (Часть 1 рисунка)
  2. Затем поршень движется вверх, сжимая топливно-воздушную смесь. Сжатие способствует более мощному взрыву. (Часть 2 рисунка)
  3. Как только поршень достигает верхней точки, срабатывает свеча зажигания, которая воспламеняет топливо. Происходит взрыв бензина, при этом поршень движется вниз. (Часть 3 рисунка)
  4. Как только поршень достигает нижней точки хода, открывается выпускной клапан для вывода продуктов сгорания по выхлопной трубе. (Часть 4 рисунка)
 
Теперь двигатель готов к началу следующего цикла, происходит впуск топлива и воздуха.
Обратите внимание, что движение, получаемое в результате работы двигателя внутреннего сгорания, является вращательным, в то время как движение, производимое картофельной пушкой - линейное (прямая линия). В двигателе линейное движение поршней переводится во вращательное движение при помощи коленвала. Вращательное движение идеально подходит для вращения колес автомобиля.
 
В следующем разделе мы предлагаем рассмотреть детали, которые обеспечивают работу двигателя, начиная с цилиндров.

 
 
Устройство двигателя
 
Цилиндр является самой важной частью двигателя, поршень совершает поступательные движения в цилиндре. Вышеописанный двигатель имеет один цилиндр. Такой двигатель типичен для газонокосилок, однако в автомобильные двигатели имеют более одного цилиндра (обычно четыре, шесть или восемь). В многоцилиндровых двигателях цилиндры расположены в одном из трех порядков: линейно, V-образно или оппозитно (т.н. двигатель с горизонтальными противолежащими цилиндрами или оппозитный двигатель).
 

Рисунок 2. Линейное расположение - Цилиндры расположены линейно в один ряд.
 

Рисунок 3. V-образное - Цилиндры расположены линейно в два ряда под углом друг к другу.
 

Рисунок 4. Оппозитное - Цилиндры расположены линейно в два ряда с противоположных сторон двигателя.
 
Говоря об управляемости, затратах на производство и характеристиках формы, необходимо отметить, что различные конфигурации имеют свои преимущества и недостатки. Благодаря этим преимуществам и недостаткам определенные типы двигателей подходят для определенных автомобилей.
 
Давайте более подробно рассмотрим основные детали двигателя.
 
Свеча зажигания
Свеча зажигания подает искру для воспламенения топливно-воздушной смеси, что обеспечивает процесс сгорания. Для правильной работы двигателя искра должна подаваться в строго определенный момент.
 
Клапаны
Впускной и выпускной клапаны открываются в определенный момент для впуска топлива и воздуха и выпуска выхлопа. Обратите внимание, что оба клапана закрыты во время тактов сжатия и сгорания для обеспечения герметичности камеры сгорания.
 
Поршень
Поршень - это металлическая деталь цилиндрической формы, которая движется вверх и вниз внутри цилиндра.
 
Поршневые кольца
Поршневые кольца обеспечивают скользящее уплотнение между внешней кромкой поршня и внутренней кромкой цилиндра. Кольца используются для двух целей:
 

  • Они препятствуют попаданию топливно-воздушной смеси в картер из камеры сгорания в процессе такта сжатия и рабочего такта.
  • Они препятствуют попаданию масла из картера в камеру сгорания, где оно может сгореть.
 
Большинство автомобилей, которые "жгут масло" и требуют его добавления каждые 1000 км, имеют старые двигатели, поршневые кольца которых уже не могут обеспечивать надлежащее уплотнение.
 
Шатун
Шатун соединяет поршень и коленвал. Он может вращаться с обеих сторон для изменения угла во время движения поршня и вращения коленвала.
 
Коленвал
Коленвал преобразует поступательное движение поршней во вращательное как рычаг "чертика из табакерки".
 
Картер
Картер окружает коленвал. В нем находится некоторое количество масла, которое собирается в нижней части картера (поддоне картера).
 
Далее мы узнаем о неполадках двигателя.

 

 
Неполадки двигателя
 
Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится... Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на "большой тройке". Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:
 
Плохая топливная смесь - Данная проблема может возникнуть по нескольким причинам:
 

  • У Вас закончился бензин, поэтому в двигатель поступает только воздух без топлива.
  • У Вас забилось впускное отверстие воздуха, поэтому поступает только топливо.
  • Топливная система подает слишком много или мало топлива, в результате чего сгорание не происходит надлежащим образом.
  • Возможно, в топливе присутствуют примеси (например, в бензобак попала вода), которые препятствуют сгоранию.
 
Недостаточная компрессия - Если топливно-воздушная смесь не будет сжата надлежащим образом, процесс сгорания будет проходить неправильно. Недостаточная компрессия может быть вызвана рядом причин:
 
  • Износ поршневых колец (топливно-воздушная смесь вытекает за пределы поршня в процессе сжатия).
  • Недостаточное уплотнение клапана впуска или выпуска, что опять же вызывает протечку.
  • В цилиндре имеются повреждения.
 
Наиболее часто повреждение цилиндра происходит в его верхней части (на которой установлены клапаны, свеча зажигания и которая называется головка цилиндра) крепится к самому цилиндру. Обычно головка цилиндра крепится к самому цилиндру при помощи болтового соединения с использованием тонкой прокладки, которая обеспечивает качественное уплотнение.. При повреждении прокладки, между цилиндром и его головкой образуются небольшие отверстия, в результате чего происходят протечки.
 
Регулярное техническое обслуживание может помочь избежать ремонта
 
Отсутствие искры - Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:
 
  • При износе свечи зажигания или ее провода может наблюдаться слабая искра.
  • При повреждении или обрыве провода или система, передающая искру, не функционирует надлежащим образом, искра может отсутствовать.
  • Если искра подается слишком рано или поздно во время цикла (т.е. если регулировка зажигания отключена), воспламенение топлива не произойдет в нужный момент, что может повлечь к различным проблемам.
 
Могут возникнуть и другие неполадки. Например:
 
  • Если аккумулятор разряжен, Вы также не сможете завести двигатель.
  • Если подшипники, которые обеспечивают свободное вращение коленвала, изношены, коленвал не сможет вращаться, в результате чего двигатель не заведется.
  • Если открытие/закрытие клапанов не происходит в нужный момент и не происходит вообще, воздух не сможет поступать и выходить, что будет препятствовать работе двигателя.
  • Если кто-то засунет картофелину Вам в выхлопную трубу, выхлоп не будет выпущен из цилиндра, поэтому двигатель не заведется.
  • Если у Вас закончилось масло, поршень не сможет свободно двигаться в цилиндре, в результате чего двигатель заклинит.
  • В исправно работающем двигателе все эти факторы находятся в допустимых пределах.
 
Как Вы видите, в двигателе имеется несколько систем, которые обеспечивают преобразование энергии топлива в механическую энергию. В следующих разделах мы рассмотрим различные подсистемы, которые используются в двигателях.

 
 
Клапанный механизм и система зажигания двигателя
 
Большинство подсистем двигателя может быть установлено с использованием различных технологий, а новые технологии могут улучшить показатели двигателя. Далее мы рассмотрим различные подсистемы, которые используются в современных двигателях, начиная с клапанного механизма.
 
Клапанный механизм состоит из клапанов и механизма, который открывает и закрывает их. Открывающая и закрывающая система называется распредвал. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз ,как показано на Рисунке 5.
 

Рисунок 5. Распредвал
 
В большинстве современных автомобилей используются так называемые верхнерасположенные распредвалы. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз, как показано на Рисунке 5. Кулачки воздействуют на клапаны напрямую или посредством очень короткой тяги. В старых моделях двигателей распредвал расположен в картере рядом с коленвалом. Штифты соединяют нижнюю часть кулачков с толкателями клапанов, расположенными над клапанами. В таком устройстве имеется больше движущихся частей, в результате чего возникает отставание между временем активации кулачка и последующим перемещением клапана. Ремень ГРМ или цепь ГРМ соединяет коленвал с распредвалом таким образом, чтобы клапаны двигались синхронно с поршнями. Скорость вращения распредвала в два раза ниже, чем у коленвала. Во многих мощных двигателях на каждый цилиндр установлено по четыре клапана (два впускных и два выпускных), такая конструкция требует наличия двух распредвалов на блок цилиндров, отсюда и название "двухраспредвальный вид головки". Для получения более подробной информации читайте статью "Как работает распредвал".
 
Система зажигания (Рисунок 6) генерирует электрический разряд высокого напряжения и передает его от свечи зажигания по проводам зажигания. Вначале заряд поступает на распределитель, который Вы легко можете найти под капотом большинства автомобилей. Распределитель имеет один провод, входящий в центре и четыре, шесть или восемь проводов (в зависимости от количества цилиндров), выходящие их него. Эти провода зажигания передают заряд на каждую свечу зажигания. Зажигание двигателя отрегулировано таким образом, что за один раз искру от распределителя получает только один цилиндр. Такая конструкция обеспечивает максимальную равномерность работы. Для получения более подробной информации читайте статью "Как работает автомобильная система зажигания".
 

 


Рисунок 6. Система зажигания
 
В следующем разделе мы рассмотрим, как происходит запуск, охлаждение и циркуляция воздуха в двигателе.

 
 
Системы охлаждения, воздухозабора и запуска двигателя
 
В большинстве автомобилей система охлаждения состоит из радиатора и водяного насоса. Охлаждающая жидкость циркулирует по охлаждающей рубашке цилиндров, затем попадает в радиатор для охлаждения. В некоторых автомобилях (преимущественно в Volkswagen Жук) и в большинстве мотоциклов и газонокосилок используется воздушное охлаждение двигателей (двигатель с воздушным охлаждением легко узнать по ребрам на внешней стороне цилиндров, которые рассевают тепло). Двигатели с воздушным охлаждением намного легче, но охлаждаются хуже, что снижает их срок эксплуатации и производительность. Для получения более подробной информации читайте статью "Как работает система охлаждения".

На схеме представлено соединение патрубков системы охлаждения
 
Итак, теперь Вы знаете, что и как охлаждает двигатель Вашего автомобиля. Но почему так важна циркуляция воздуха? Большинство двигателей является безнаддувными, т.е. воздух поступает через воздушные фильтры непосредственно в цилиндры. Более мощные двигатели либо имеют турбонаддув, либо наддув, т.е. воздух поступает в двигатель под давлением (для подачи в цилиндр большего объема топливно-воздушной смечи) для увеличения мощности двигателя. Уровень сжатия воздуха называется наддув. При турбонаддуве используется небольшая турбина, установленная на выхлопную трубу для вращения нагнетающей турбины входящим потоком воздуха. Турбокомпрессор устанавливается непосредственно на двигатель для вращения компрессора.

 
Для получения более подробной информации читайте статью "Как работает турбокомпрессор".
 
Увеличение мощности двигателя - это, конечно, хорошо, но что же происходит когда Вы поворачиваете ключ? Система запуска состоит из электростартера и соленоида стартера. При повороте ключа зажигания, стартер несколько раз проворачивает двигатель для начала процесса сгорания. Для запуска холодного двигателя требуется мощный стартер. Стартер должен преодолеть:
 

  • Любое собственное трение, вызванное поршневыми кольцами
  • Давление сжатия любого из цилиндров во время такта сжатия
  • Энергию, необходимую для открытия и закрытия клапанов распредвалом
  • А также действие всех остальных деталей, установленных непосредственно на двигателе, например водяного насоса, масляного насоса, генератора и т.д.
 
В связи с тем, что требуется большое количество энергии и в автомобилях используется 12-вольтная электросистема, на стартер должен поступать ток в несколько сотен ампер. Соленоид стартера - это большой электронный переключатель, который может выдержать ток такой силы. При повороте ключа зажигания, он запускает соленоид для подачи питания на стартер.
 
В следующем разделе мы расскажем о подсистемах двигателя, которые отвечают за то, что в него поступает (масло и топливо) и что выходит (выхлоп и выбросы).

 
Системы смазки, подачи топлива, выхлопа и электросистема двигателя
 
Когда дело касается повседневного обслуживания, скорее всего Вас, прежде всего, заинтересует количество бензина в бензобаке Вашего автомобиля. Каким же образом бензин, которым Вы заправляетесь, заставляет работать цилиндры? Топливная система при помощи насоса подает топливо из бензобака и смешивает его с воздухом в определенных пропорциях для того, чтобы топливно-воздушная смесь затем поступала в цилиндры. Существует три способа подачи топлива: карбюрация, впрыск во впускные каналы и непосредственный впрыск.
 

  • При карбюрации устройство, которое называется карбюратор, смешивает бензин с воздухом при подаче воздуха в двигатель.
  • В двигателях с впрыском топлива необходимое количество топлива впрыскивается в каждый цилиндр отдельно либо над впускным клапаном (впрыск во впускные каналы), либо в сам цилиндр (непосредственный впрыск).
 
Для получения более подробной информации читайте статью "Как работает система впрыска топлива".
 
Масло также играет очень важную роль. Система смазки обеспечивает подачу масла для каждой движущейся детали для того, чтобы они свободно двигались. Прежде всего, смазка требуется поршням (для их плавного движения в цилиндрах) и подшипникам, которые обеспечивают вращение таких деталей, как коленвал и распредвал. В большинстве автомобилей масла из поддона картера подается при помощи масляного насоса, проходит через масляный фильтр для удаления абразивных частиц, после чего под давлением поступает на подшипники и стенки цилиндра. Затем масло стекает обратно в картер, где оно собирается, после чего цикл повторяется.
 

Выхлопная система автомобиля Porsche 911
 
Теперь, когда Вы уже кое-что знаете о том, что заливается в автомобиль, давайте рассмотрим, что же из него выходит. Выхлопная система состоит из выхлопной трубы и глушителя. Если глушитель не установлен, то Вы сможете услышать звуки тысяч небольших взрывов, доносящихся из выхлопной трубы. Глушитель заглушает эти звуки. Выхлопная система также включает в себя и каталитический дожигатель выхлопных газов. Для получения более подробной информации читайте статью "Как работает каталитический дожигатель выхлопных газов".
 
В большинстве современных автомобилей система понижения токсичности выхлопа состоит из каталитического дожигателя выхлопных газов, и набора датчиков и приводов и компьютера, который отслеживает и регулирует происходящие процессы. Например, каталитический дожигатель использует катализатор и кислород для сжигания неотработанного топлива и некоторых других химических веществ, содержащихся в выхлопе. Датчик кислорода отвечает за количество кислорода в выхлопе, достаточное для работы катализатора, при необходимости датчик производит дополнительную регулировку.
 
Что еще помимо бензина питает Ваш автомобиль? Электросистема состоит из аккумулятора и генератора. Генератор соединяется с двигателем при помощи ремня и генерирует ток для зарядки аккумулятора. Аккумулятор подает 12 вольт на все системы, которым требуется электропитание (система зажигания, радио, фары, стеклоочистители, электрические стеклоподъёмники и сиденья с электрическим приводом регулировки, компьютеры и т.д.).
 
Теперь, когда Вы все узнали про подсистемы двигателя, мы расскажем о том, как увеличить мощность двигателя.

 
 
Увеличение мощности двигателя
 
Прочитав данную статью, Вы увидите, что существует множество способов увеличения показателей Вашего двигателя. Производители автомобилей постоянно экспериментируют со следующими параметрами для увеличения мощности двигателя или снижения расхода топлива.
 
Увеличение рабочего объема - Большой рабочий объем способствует увеличению мощности, т.к. при каждом обороте двигателя сгорает больше топлива. Увеличить рабочий объем можно, установив большие или дополнительные цилиндры. Практика показывает, что не имеет смысла устанавливать более 12 цилиндров.
 
Увеличение степени сжатия - Увеличение степени сжатия способствует увеличению мощности. Однако, чем сильнее происходит сжатие топливно-воздушной смеси, тем выше вероятность ее самовозгорания (еще до срабатывания свечи зажигания). Высокооктановый бензин предотвращает раннее сгорание топлива. Именно по этой причине мощные автомобили необходимо заправлять высокооктановым бензином - в их двигателях используется более высокая степень сжатия для увеличения мощности.
Увеличение объема подаваемой смеси - При увеличении подачи воздуха (и, соответственно, топлива), не изменяя размер цилиндра, можно увеличить мощность (точно также, как при увеличении размера цилиндра). Турбокомпрессоры и компрессоры наддува повышают давление поступающего воздуха, благодаря чему в цилиндр можно подать больше воздуха. Для получения более подробной информации читайте статью "Как работает турбокомпрессор".
 
Охлаждение поступающего воздуха - При сжатии воздуха, его температура повышается. Поэтому лучше обеспечивать подачу более холодного воздуха в цилиндр, т.к. чем выше температура воздуха, тем меньше его расширение при сгорании. По этой причине во многих двигателях с наддувом и турбонаддувом используются охладители воздуха. Охладитель воздуха - это специальный радиатор, по которому сжатый воздух проходит для охлаждения перед подачей в цилиндр. Для получения более подробной информации читайте статью "Как работает система охлаждения".
 
Облегчение подачи воздуха  - При движении поршня вниз во время такта впуска, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух впускных клапанов на каждый цилиндр. В некоторых современных автомобилях используются полированные впускные коллекторы для снижения сопротивления воздуха. Установка больших воздушных фильтров также может улучшить подачу воздуха.
 
Облегчение выпуска выхлопа - При выпуске выхлопа из цилиндра, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух выпускных клапанов на каждый цилиндр (автомобиль с двумя впускными и двумя выпускными клапанами имеет по четыре клапана на каждый цилиндр, что увеличивает мощность двигателя - когда Вы слышите рекламу автомобиля, в которой говорится, что у него 4 цилиндра и 16 клапанов, это означает, что в двигателе установлено по четыре клапана на каждый цилиндр). Если выхлопная труба слишком узкая или сопротивление воздуха в глушителе слишком высокое, то это может создать противодавление, что также снизит мощность. В высокоэффективных выхлопных системах используются выпускные коллекторы, широкие выхлопные трубы и глушители для предотвращения образования противодавления в выхлопной системе. Поэтому, когда Вы слышите, что в автомобиле установлена "раздельная система выпуска", это значит, что для улучшения выпуска отработанных газов используется две выхлопных трубы вместо одной.
 
Снижение массы - Чем легче детали, тем эффективнее работает двигатель. Каждый раз, когда поршень меняет направления движения, он затрачивает энергию на то, чтобы прекратить движение в одну сторону и начать в другую. Чем легче поршень, тем меньше энергии ему требуется.
 
Впрыск топлива - Система впрыска топлива обеспечивает очень точное дозирование топлива для каждого цилиндра. Благодаря этому увеличивается мощность и снижается расход топлива. Для получения более подробной информации читайте статью "Как работает система впрыска топлива".
 
  
Часто задаваемые вопросы по двигателям
 
Ниже приведены наиболее часто задаваемые вопросы наших читателей, а также ответы на них:
 

  • Чем отличаются бензиновые и дизельные двигатели? В дизельных двигателях отсутствует свеча зажигания. Дизельное топливо подается в цилиндр, возгорание происходит под действием тепла и давления во время такта сжатия. Энергетическая плотность дизеля значительно выше, чем у бензина, поэтому дизельный двигатель рассчитан на больший пробег. Для получения более подробной информации читайте статью "Как работает дизельный двигатель".
 
  • Чем отличаются двухтактные и четырехтактные двигатели? В большинстве бензопил и лодочных моторов используются двухтактные двигатели. В двухтактном двигателе отсутствуют клапаны, а свеча зажигания дает искру каждый раз, когда поршень находится в верхней точке хода. Через отверстие в нижней части стенки цилиндра происходит впуск топлива и воздуха. Когда поршень движется вверх, сжимая смесь, свеча зажигания дает искру для начала процесса сгорания, отработанные газы выходят через другое отверстие в стенке цилиндра. В двухтактных двигателях необходимо смешивать масло с бензином, т.к. отверстия в стенках цилиндров не допускают использование уплотнительных колец для герметизации камеры сгорания. В общем, двухтактные двигатели являются достаточно мощными для своих размеров, т.к. в них на один поворот двигателя происходит в два раза больше циклов сгорания. Однако, двухтактный двигатель расходует больше бензина и сжигает большое количество масла, соответственно, он наносит больший вред экологии. Для получения более подробной информации читайте статью "Как работает двухтактный двигатель".
 
  • В этой статье Вы упоминали паровые двигатели - существуют ли какие-либо преимущества паровых двигателей или других двигателей внешнего сгорания? Единственное преимущество паровых двигателей заключается в том, что в качестве топлива можно использовать все, что горит. Например, в паровом двигателе в качестве топлива можно использовать уголь, газеты, дрова, в то время как для работы двигателя внутреннего сгорания требуется очищенное высококачественное жидкое или газообразное топливо. Для получения более подробной информации читайте статью "Как работает паровой двигатель".
 
  • Используются ли в автомобильных двигателях какие-либо другие циклы помимо цикла Отто? Как говорилось ранее, в двухтактных и дизельных двигателях используются другие циклы работы. В двигателе автомобиля Mazda Millenia используется модифицированный цикл Отто, который называется цикл Миллера. В газотурбинных двигателях используется цикл Брайтона. В дизельных ротационных двигателях Ванкеля используется цикл Отто, однако он происходит совершенно по-другому в отличие от четырехтактных поршневых двигателей.
 
  • Зачем нужно устанавливать восемь цилиндров? Почему нельзя установить один большой цилиндр с таким же рабочим объемом, как у восьми цилиндров? По ряду причин в 4.0л двигателе используется восемь цилиндров объемом пол-литра каждый, а не один большой 4-литровый цилиндр. Основная причина - это равномерность работы. V-образный восьмицилиндровый двигатель работает более равномерно, т.к. в нем происходит восемь взрывов с равными интервалами вместо одного сильного взрыва. Другая причина - это начальный крутящий момент. Когда Вы заводите V-образный восьмицилиндровый двигатель, Вам необходимы только два цилиндра (1л) во время их тактов сжатия, если использовать один большой цилиндр, то придется производить сжатие 4 литров.
 
Чем 4-цилиндровый двигатель отличается от V-образного шестицилиндрового двигателя?
 
Количество цилиндров в двигателе играет важную роль в его мощности. Каждый цилиндр имеет поршень, который движется внутри него, эти поршни соединены с коленвалом и вращают его. Чем больше используется поршней, тем больше происходит сгораний топлива в определенный момент времени. Это означает, что за меньшее время может быть выработано больше мощности.
 
4-цилиндровые двигатели обычно имеют "прямое" или "линейное" расположение цилиндров, в то время как в 6-цилиндровых двигателях используется более компактное V-образное расположение, поэтому они и называются V-образные 6-цилиндровые двигатели. Американские производители автомобилей остановили свой выбор на V-образных 6-цилиндровых двигателях, т.к. являются более мощными и тихими, оставаясь при этом достаточно легкими и компактными для установки в автомобили.
 

4-цилиндровый двигатель с линейным расположением цилиндров автомобиля Lotus Elise
 
Исторически сложилось так, что американские автовладельцы отвернулись от 4-цилиндровых двигателей, считая их медленными, слабыми, работающими неравномерно и дающими слабое ускорение. Однако, когда такие японские производители автомобилей, как Honda и Toyota стали устанавливать мощные 4-цилиндровые двигатели в 1980-х и 90-х, американцы по достоинству оценили эти компактные двигатели. Даже, несмотря на то, что такие японские автомобили, как Toyota Camry имели огромный успех по сравнению с  аналогичными моделями американских производителей, в США продолжался выпуск автомобилей с 6-цилиндровыми двигателями, т.к. считалось, что американцам необходимы мощные автомобили. На сегодняшний день, в связи с ростом цен на бензин и обострившейся экологической ситуацией, Детройт переходит на 4-цилиндровые двигатели благодаря их низкому расходу топлива и меньшим выбросам в атмосферу.
 

3,8л V-образный 6-цилиндровый двигатель с турбонаддувом автомобиля Nissan GT-R.
 
Что касается будущего 6-цилиндровых двигателей, то за последние годы были максимально устранены различия между 4-цилиндровыми и 6-цилиндровыми двигателями. Для того, чтобы соответствовать требованиям низкого расхода бензина и уровня выхлопных газов, производители приложили много усилий по улучшению работы 6-цилиндровых двигателей. Большинство современных автомобилей с 6-цилиндровыми двигателями соответствуют стандартам расхода топлива уровня выхлопов, установленных для компактных 4-цилиндровых двигателей. Таким образом, различия в эффективности и мощности этих двух типов двигателей ослабевают, и принятие решения о покупке 4-цилиндрового или 6-цилиндрового двигателя сводится к их стоимости. Что касается моделей автомобильных, доступных с обоими типами двигателей, конфигурация с 4-цилиндровым двигателем стоит дешевле до $1000 по сравнению с 6-цилиндровым. Таким образом, независимо от мощности автомобиля, 4-цилиндровый двигатель поможет Вам сэкономить.
 
И, напоследок: Не стоит пытаться установить 6-цилиндровый двигатель на автомобиль, в котором изначально стоял 4-цилиндровый. Переоборудование автомобиля с 4-цилиндровым двигателем для установки 6-цилиндрового может обойтись Вам дороже, чем покупка нового автомобиля.
 
 
Источник:  https://auto.howstuffworks.com/

Топ-10 моторов всех времен — журнал За рулем

В нашем обзоре — десять знаменитых двигателей, десять ступеней к совершенству. Почти каждый из них повлиял не только на развитие техники, но и на социальную среду.

10-е место: родоначальник даунсайзинга

01 TopEngines zr04–11

Приличные характеристики двигателя при скромном рабочем объеме уже не особенно удивляют. Мы начинаем привыкать к понятию «даунсайзинг», понимая, что эра двигателей большого литража постепенно уходит. А началось это, на мой взгляд, с дебюта в середине 1990-х годов наддувного мотора в 1,8 л, разработанного «Ауди». При умеренном рабочем объеме он должен был удовлетворить владельцев автомобилей самых различных классов. Поэтому даже в самой простой версии двигатель выдавал 148 сил, чего вполне хватало, чтобы превратить в маленькую зажигалку хэтчбек «СЕАТ-Ибица» и не заставлять гореть со стыда владельца престижного «Ауди-А6».

Собственно, литраж ничего не говорил о способностях агрегата. Это был небольшой (в том числе по габаритам — ставь его хоть вдоль, хоть поперек) шедевр своего времени: пять клапанов на цилиндр, изменяемые фазы на впуске, кованые алюминиевые поршни и, конечно, турбонаддув.

С его помощью мощность мотора поднимали все выше и выше, дойдя в спецверсии «Ауди-ТТ кваттро Спорт» до 236 сил. Данный предел был обусловлен лишь спецификой дорожного автомобиля. В гоночной формуле «Палмер Ауди», где ресурс не так важен, с новым блоком управления и агрегатом наддува с 1800-кубового двигателя сняли 365 сил. В Формуле-2, превращая серийный двигатель в чисто гоночный агрегат, достигли и вовсе фантастических 480 сил. Поэтому переход Формулы-1 на «шестерки» объемом 1,6 л в свете достижений мотора «Ауди» не выглядит абсурдным.

9-е место: верность ротору

02 TopEngines zr04–11

Исключительный случай — когда автомобильная компания прочно ассоциируется с одним типом двигателя. Конечно, «Мазда» не сама изобрела роторно-поршневой двигатель Ванкеля. Зато она в труднейшие времена энергетического кризиса 1970-х пересилила обстоятельства: не бросила, как другие, эту весьма сложную в доводке конструкцию, а продолжила совершенствовать «Ванкель» в узком, зато перспективном для имиджа сегменте форсированных спортивных машин. Хотя первоначально планировалось, что все модели «Мазды», вплоть до грузовиков и автобусов, перейдут со временем на двигатель Ванкеля.

Когда в 1975 году двухсекционный мотор с индексом 13В появился на серийных машинах, никто не мог предположить, что он станет самым массовым РПД в мире и продержится в производстве более 30 лет. Более того, даже современный маздовский РПД «Ренезис» — лишь результат эволюции 13B. Именно этот мотор стал проводником в серию большинства впервые примененных на РПД новинок, которые и обеспечили ему столь долгую жизнь, — настроенного впуска с изменяемой геометрией, электронного впрыска топлива, турбонаддува. В итоге мотор, который начал жизнь под капотом утилитарного пикапа с мощности чуть больше 100 сил, превратился в короля автогонок, выдававшего даже в серийном варианте минимум 280. Повышенный расход топлива и большой угар масла — неизбежные проблемы любого РПД — были оправданной расплатой за скромный вес, низкий центр тяжести и способность крутить свыше 10 тысяч оборотов в минуту. Маздовские купе RX-7 доминировали в американских кузовных чемпионатах на протяжении 1980-х годов во многом благодаря роторно-поршневому мотору 13B.

8-е место: «восьмерка» планеты Земля

03 TopEngines zr04–11

Материалы по теме

Любой, кто хоть немного интересуется американским автомобилестроением, наверняка слышал о «восьмерке» «Шевроле» семейства Small Block. Неудивительно, ведь ее в почти неизменном виде можно было встретить на различных моделях концерна «Дженерал моторс» с 1955 по 2004 год. Долгая карьера сделала этот нижневальный двигатель самым распространенным V8 на Земле. Small Block первого поколения (не путать с аналогичными моторами второй и третьей генераций серий LT и LS!) выпускается и сейчас, правда, только на рынок запчастей. Общее число изготовленных моторов превысило 90 миллионов.

Не стоит соотносить слово Small с небольшим литражом двигателя. Рабочий объем «восьмерки» никогда не опускался ниже 4,3 л, а в лучшие времена достигал 6,6 л. Свое имя мотор получил за небольшую высоту блока, обусловленную соотношением диаметра цилиндра и хода поршня: на первом образце 95,2х76,2 мм. Такая короткоходность обусловлена техзаданием: новую «восьмерку» следовало вписать под низкий капот родстера «Шевроле-Корвет», который до этого едва не лишился спроса из-за слабой для него рядной «шестерки». Не появись этот мощный V8, подхлестнувший интерес к первому массовому американскому спорткару, «Корвет» вряд ли пережил бы середину 1950-х.

Вскоре удачного шевролетовского «малыша» назначили базовой «восьмеркой» для всего GM, хотя двигатели V8 собственной конструкции были у каждого отделения концерна. Простой, надежный и неприхотливый мотор пережил все уровни признания: участвовал в гонках, трудился в качестве движущей силы катеров и изредка монтировался даже на легкие самолеты. И хотя в последние годы полноценной жизни двигателя его предлагали только для пикапов и фургонов, все автомобильные фанаты знали, что именно этот заслуженный V8 когда-то был рожден для спасения «Шевроле-Корвет».

7-е место: единственный в своем роде

04 TopEngines zr04–11

Какой же рейтинг моторов обойдется без БМВ! Марка попала бы в наш перечень уже за исключительную приверженность рядной «шестерке» — когда-то такая компоновка легковых двигателей была широко распространена. Помимо баварцев, на легковых машинах (вседорожники и пикапы не в счет) ее применяют сейчас только «Вольво» и австралийский филиал «Форда» (остальные сдались в пользу менее уравновешенного, зато гораздо более компактного V6). Но БМВ стоит особняком: только эта компания смогла выжать из расположенных в ряд шести цилиндров все преимущества — от потрясающе плавной работы до способности легко раскручиваться до самых высоких оборотов.

С каждым поколением, начиная с «шестерки» БМВ образца 1968 года, которую получили, добавив пару цилиндров к уже выпускавшейся «четверке», эти двигатели становились легче, мощнее, совершеннее. Многоцилиндровые схемы для баварцев были практически под запретом — первый V12 появился лишь в 1986 году, а V8 вообще только в 1992-м. Создание этих двигателей легче оправдать маркетингом, нежели истинной любовью инженеров — они всю душу и умение вкладывали именно в шесть расположенных в ряд цилиндров.

Апофеоз атмосферной «шестерки» БМВ — мотор S54 образца 2000 года, предназначенный для М3. Это гимн совершенству гоночного по сути двигателя, водруженного на гражданский автомобиль. Тяжелого на подъем вначале, но расцветающего при малейшем намеке на спортивный стиль езды. С 3,2 л рабочего объема сняли 343 силы (с литра — 107) — для атмосферного мотора даже сейчас великолепный результат.

Его было бы трудно достичь без применения всех новейших на тот момент технологий — индивидуальных дросселей на каждый цилиндр с электронным управлением, системы регулирования фаз, причем как впуска, так и выпуска. Чтобы мотор выдерживал любые нагрузки, его даже перевели на чугунный блок цилиндров, что для БМВ редкость.

К сожалению, следующее поколение M3 отказалось от семейных ценностей в пользу V8. Это тоже очень неплохой мотор — но радость от укрощения разъяренного зверя ушла вместе с прежней «шестеркой». Подобные ей двигатели в нынешних условиях считаются, как бы точнее сказать, неполиткорректными.

6-е место: легенда гонок

05 TopEngines zr04–11

Последние образцы настоящего V8 «Хеми» собрали в 1971 году (современное одноименное семейство не имеет с ним ничего общего), но еще более четверти века этот двигатель служил любимой игрушкой любителям дрэг-рейсинга. Мотор, появившийся в 1964 году как чисто гоночный для серии NASCAR, был идеальным образцом спортивного V8 (рабочий объем 7 л, или 426 куб. дюймов по американской системе, стандартная мощность 425 сил) с минимальным применением сложных технологий: нижневальный, с двумя клапанами на цилиндр.

Важнейшим отличием от конкурентов стала полусферическая (отсюда «хеми», происходит от HEMIspherical — «полусферический») камера сгорания, позволившая оптимизировать процесс — получить большую мощность при меньшей степени сжатия. Впрочем, это тоже изобрел не «Крайслер». Его заслуга в том, что на основе известной технологии он создал непобедимый мотор, отличавшийся помимо характеристик еще и нереальной прочностью, способный выдержать самые ужасные методы форсировки. Недаром «Хеми» весил заметно больше, чем любой другой V8 начала 1960-х, — почти 400 кг. Но это обстоятельство совершенно не мешало автомобилям с 426-м «Хеми» уверенно громить соперников в гонках.

Гегемонию крайслеровского мотора не раз пытались ограничить — переписывая правила, изменяя количество требуемых для омологации серийных моторов, но он не сдавался и удерживал лидирующие позиции в NASCAR вплоть до 1970-х годов. К тому времени он стал не только спортивной, но и уличной легендой: серийные машины, снабженные дорожной версией «Хеми», выпускались в мизерных количествах — их сделали не более 11 тысяч, причем и эту малость распределили среди нескольких моделей «Доджа» и «Плимута». Ныне автомобили с оригинальным «Хеми», несмотря на примитивную конструкцию, стоят бешеные деньги — легенда пошла на новый круг.

5-е место: сложнее не бывает

06 TopEngines zr04–11

Самый необычный и амбициозный проект двигателя уникальной компоновки W16 выпестовали ради возрожденной марки «Бугатти». На самом деле этот двигатель, за исключением грандиозной мощности в 1001 л.с., является логичным развитием семейства компактных VR-образных моторов «Фольксвагена». Они отличались критически малым углом развала цилиндров — всего 15 градусов, что позволяло использовать на оба ряда одну головку. Мотор VR6 появился на «фольксвагенах» еще в 1991 году. Американский рынок требовал машин с шестью цилиндрами, и немцы умудрились выйти из положения, применив оригинальную схему, позволявшую без увеличения подкапотного пространства легко втиснуть «шестерку» (как вдоль, так и поперек) взамен стандартных четырех цилиндров.

Материалы по теме

Позже удачная находка получила развитие в более крупных масштабах. Амбиции Фердинанда Пиха, желавшего сделать «Фольксваген» топ-брендом, привели к созданию W8, представлявшего собой два VR4, установленных на общий картер под углом 72 градуса. Появился W12, «собранный» из двух VR6. Но мотор «Бугатти» даже в этой компании стоит особняком. Перед его создателями стояла задача почти неразрешимая — выдать рекордную мощность при минимальной массе. Поэтому мотор даже при схожей схеме получился иного уровня — сделанный на грани инженерного безумства. Конструкторы максимально уплотняли пространство вокруг двигателя. Блоки двух VR8 развалили под углом 90 градусов, разместив между ними сразу четыре турбонагнетателя.

Серьезная проблема возникла с охлаждением — решая ее, только для одних интеркулеров предусмотрели 15 л охлаждающей жидкости. Обычно данного количества хватало на весь мотор. Но «Вейрон» не вписывался в стандартные схемы — на охлаждение его двигателя в предельных режимах работали три отдельных радиатора, перегоняя 40 л антифриза. Возникли сложности с диагностикой, ведь определить сбои в одном из 16 цилиндров на слух практически невозможно. Поэтому мотор оснастили системой самодиагоностики, способной оперативно решать проблему, вплоть до отключения проблемного цилиндра.

А теперь самое интересное. При всей сложности и грандиозности замысла (одних только клапанов — вдумайтесь! — 64 штуки) создателям удалось удержать массу W16 в пределах 400 кг. Финансовый фактор при создании этого двигателя не имел почти никакого значения, поэтому титановые шатуны или полностью алюминиевый масляный насос для мотора «Бугатти» в порядке вещей.

4-е место: основоположник американской мечты

07 TopEngines zr04–11

Теперь о воплощении одной из последних замечательных идей Генри Форда, перевернувшей автомобильный мир. До него никто не предполагал, что массовый автомобиль можно запросто комплектовать престижной и мощной «восьмеркой», которая считалась принадлежностью лишь дорогих, роскошных машин. Появившийся в 1932 году фордовский V8 кардинально изменил на последующие полвека представление об автомобилях из-за океана. Они и до того заметно превосходили по размерам европейские модели аналогичной стоимости, а появление массового V8 окончательно развело процесс развития автомобилестроения на разных берегах Атлантики в противоположных направлениях.

Материалы по теме

Но как Генри Форду удалось снизить себестоимость довольно-таки сложного и массивного агрегата до уровня ширпотреба? О, здесь была масса ухищрений. К примеру, оба блока цилиндров и картер в фордовском V8 отливали как единую деталь. У «восьмерок» старой школы это были как минимум три отдельных элемента, скреплявшихся воедино болтами. Коленчатый вал, вместо того чтобы ковать, отливали с последующим термоупрочнением, что также снижало себестоимость.

Распредвал располагался в блоке, клапаны и выпускная система размещались внутри развала цилиндров — это упрощало конструкцию двигателя, однако приводило к перегреву при малейших проблемах с охлаждением. Даже в начальном варианте «восьмерка» при рабочем объеме 3,2 л выдавала приличные 65 сил, что быстро сделало «Форд- V8» любимцем гангстеров и полиции. Джон Диллинджер и Клайд Берроу в перерывах между кровавыми делами умудрились черкнуть пару строк Генри Форду с благодарностью за столь быстрый автомобиль.

Когда у первых V8 наступил пенсионный возраст, они оказались в руках молодых людей, творивших на их базе диковинные тачки по кличке «хот-род». Простая, мощная и легко поддающаяся форсировке фордовская «восьмерка» поспособствовала рождению сверхпопулярной автоконтркультуры. Ну а сама фирма отправила мотор на пенсию лишь в 1953 году, когда восьмицилиндровые двигатели в американских машинах стали уже повсеместным явлением.

3-е место: изменивший сознание

08 TopEngines zr04–11

В 1993 году в недрах исследовательского подразделения «Тойоты» была создана группа по разработке перспективных машин с минимальными выбросами, которые смогли бы занять нишу между традиционными машинами с ДВС и электромобилями. Результатом стала появившаяся в 1997 году «Тойота-Приус» — первый массовый автомобиль с гибридным приводом. Тогда он воспринимался как любопытный эксперимент, игрушка, продаваемая заведомо в убыток, которая вряд ли выйдет за пределы обожающих экзотику Японских островов. Но «Тойота» строила более серьезные планы.

Коренное отличие «Приуса» от прочих гибридных машин, уже существовавших в то время (речь идет о множестве экспериментальных и чуть раньше вышедшей на рынок серийной «Хонде-Инсайт»), заключалось в новом подходе к построению подобной модели. «Приус» создавали как гибрид с самого начала, без упрощений и компромиссов вроде заимствования кузова у традиционной модели или использования обычной механической коробки передач (как было сделано на «Инсайте»).

«Тойота» внедрила гибридную трансмиссию как неотъемлемую часть машины. Даже 1,5-литровый бензиновый двигатель специально модифицировали для работы с электромотором, переведя его на цикл Аткинсона, отличающийся укороченным тактом сжатия за счет увеличенной продолжительности открытия впускных клапанов. Это позволило получить необычно высокую степень сжатия (13–13,5) и дополнительные плюсы в копилку экономичности и экологичности.

Расплатой стала полная беспомощность ДВС на низких оборотах, но для гибрида, который всегда располагает поддержкой электродвигателя, это не проблема. Такой комплексный подход в итоге сделал «Приус» законодателем моды на гибриды. Он стоял в начале процесса, который уже не остановить.

2-е место: любимец всех континентов

09 TopEngines zr04–11

Что сказать про этот воздушник от «Фольксвагена»? Он так же легендарен, как и «Жук» — автомобиль, под который его сделали. Даже больше — ведь одним «Жуком» область применения данного мотора далеко не ограничивалась. Простой, надежный и легкий, четырехцилиндровый оппозитник воздушного охлаждения оказался столь эффективным, что его популярность намного превзошла признание даже самого распространенного в мире автомобиля.

С той поры, как благодаря таланту Фердинанда Порше первые образцы мотора в 1933 году появились на прототипах «Жука», он перепробовал десятки профессий. Достаточная мощность (довоенные образцы выдавали минимум 24 силы, а самые мощные под конец серийного выпуска утроили этот показатель), беспроблемное в любом климате воздушное охлаждение и небольшая масса (цилиндры алюминиевые, картер — из магниевого сплава) позволили фольксвагеновскому мотору найти массу занятий. Он служил на амфибиях вермахта, примешивал свой выхлоп к запаху марихуаны в микробусах хиппи, приводил пожарные насосы, компрессоры, лесопилки, стал основой прогулочных багги и понтовых трайков, взмывал в небо более чем на 40 типах самолетов. И это далеко не полный список его талантов. Еще важнее, что именно из этого двигателя выросло семейство оппозитников «Порше».

На протяжении всех лет производства (моторы семейства окончательно прекратили выпускать только в 2006 году) принципиальная схема двигателя не менялась. Рос рабочий объем, на некоторых версиях применили впрыск топлива, но изначальная схема со штанговым приводом клапанов оставалась такой же, как на первых образцах 1930-х годов. Он радует сердца автомобилистов, да и не только их, более 70 лет — это ли не лучший показатель совершенства мотора?

1-е место: первый массовый

10 TopEngines zr04–11

С «Форда-Т» и его двигателя начал раскручиваться маховик массовой автомобилизации. Больше того, именно мотор «тэшки» стал в свое время самым распространенным ДВС в мире, с ним познакомилось подавляющее большинство жителей земного шара. Как и в случае с описанным выше оппозитником «Фольксвагена», мотор «Форда-Т» приводил не только одноименный автомобиль, которых с 1908 по 1927 год было построено более 15 миллионов.

Материалы по теме

Трактора, грузовики, моторные лодки, походные электростанции — он применялся везде, где была нужда в дешевом и простом в обращении моторе. Что касается автомобилей, то в какой-то период до 90% машин, колесивших по Земле, были одной-единственной модели Т. И приводил их этот самый двигатель необычно большого по сегодняшним меркам рабочего объема 2,9 л — при скромной мощности 20 сил. Но мощность тут была не принципиальна. Гораздо важнее крутящий момент и всеядность — помимо бензина «тэшку» официально разрешалось заправлять керосином и этанолом. Двигатель удивительно прост. Собранный в одном блоке с двухступенчатой планетарной коробкой передач, четырехцилиндровый мотор делил с трансмиссией смазочное масло. Никакого давления в системе не создавалось, смазка осуществлялась разбрызгиванием. Водяную помпу через год производства отправили в отставку — Генри Форд решил, что дешевому автомобилю достаточно простого термосифонного принципа, когда жидкость циркулирует благодаря разности температур. С другой стороны, фордовский мотор необычен для своего времени тем, что его блок и картер отливались как одно целое, а головка цилиндров впервые в мировой практике была сделана отдельной деталью. Но это дань массовости производства: ни один автомобиль в мире не выпускали в таких масштабах, как «Форд», поэтому его конструкция изначально рассчитана на максимально быструю и простую сборку. Двигатель «тэшки» надолго пережил сам автомобиль. Последний экземпляр собрали в августе 1941 года. Он останется в истории как первый массовый ДВС человечества.

Вертолётный двигатель - это... Что такое Вертолётный двигатель?

Вертолётный двигатель
         На некоторых вертолётах применяли самолётные турбовинтовые двигатели (См. Турбовинтовой двигатель) одновальной схемы, которые вытесняются, особенно на многодвигательных вертолётах, двухвальными турбовинтовыми двигателями с так называемой свободной турбиной (рис.). В таких двигателях турбокомпрессор не имеет механической связи с несущим винтом. Применение двухвального двигателя повышает эффективность использования силовой установки вертолёта, которая, независимо от частоты вращения турбокомпрессора, устанавливает наивыгоднейшую для каждого режима полёта частоту вращения несущего винта. Двухвальные двигатели со свободной турбиной обеспечивают более высокую надёжность работы силовой установки.

         Возможен также реактивный привод несущего винта. При этом окружное усилие прикладывается непосредственно к лопастям несущего винта без применения тяжёлой и сложной механической трансмиссии. Окружное усилие создаётся или автономными реактивными двигателями, установленными на лопастях несущего винта, или истечением газа (сжатого воздуха) из сопловых отверстий, расположенных на концах лопастей. Экономичность реактивного привода ниже механического. Из реактивных приводов наиболее экономичным является привод с турбореактивными двигателями на лопастях винта, однако из-за сложности конструкции он не получил практического применения.

         Лит.: Силовые установки вертолетов. Сб. ст., под ред. М. М. Масленникова, М., 1959; Вертолетные газотурбинные двигатели. Сб. ст., под ред. М. М. Масленникова, М., 1966.

         Г. Н. Леонов.

        

        Схема вертолётного турбовинтового двигателя со свободной турбиной: 1 — компрессор; 2 — камера сгорания; 3 — турбина для привода компрессора; 4 — свободная турбина.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Вертолётная площадка
  • Вертолётный спорт

Полезное


Смотреть что такое "Вертолётный двигатель" в других словарях:

  • вертолётный — см. вертолёт; ая, ое. Вертолётный двигатель. В ая площадка …   Словарь многих выражений

  • вертолётный — ая, ое. прил. к вертолет. Вертолетный двигатель …   Малый академический словарь

  • Вертолёт —         летательный аппарат тяжелее воздуха с вертикальными взлётом и посадкой, подъёмная сила в котором создаётся одним или несколькими (чаще двумя) несущими винтами. Слово «вертолёт» введено вместо иностранного «геликоптер». В. взлетает… …   Большая советская энциклопедия

  • вертолёт — летательный аппарат тяжелее воздуха, у которого подъёмная сила и тяга для горизонтального полёта создаются одним или двумя т. н. несущими винтами. Вертолёт может взлетать вертикально с места без разбега и садиться без пробежки, он может… …   Энциклопедия техники

  • вертолёт — а; м. Летательный аппарат тяжелее воздуха, с вертикальным взлётом и посадкой, подъёмная сила которого создаётся горизонтальными несущими винтами; геликоптер. Грузовой, военный, санитарный в. Одновинтовой в. ◁ Вертолётный, ая, ое. В. двигатель. В… …   Энциклопедический словарь

  • вертолёт — Рис. 1. Основные схемы вертолётов. вертолёт — летательный аппарат, у которого подъёмная сила и пропульсивная сила для горизонтального полёта создаются одним или несколькими несущими винтами (НВ). В. может совершать вертикальные взлет и… …   Энциклопедия «Авиация»

  • вертолёт — Рис. 1. Основные схемы вертолётов. вертолёт — летательный аппарат, у которого подъёмная сила и пропульсивная сила для горизонтального полёта создаются одним или несколькими несущими винтами (НВ). В. может совершать вертикальные взлет и… …   Энциклопедия «Авиация»

  • Специальный лётный отряд «Россия» — ИКАО RSD Позывной State Aero Дата основания 1956 …   Википедия

  • Воздушно-реактивный двигатель — (ВРД)  тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… …   Википедия

  • Комбинированный вертолёт — Винтокрыл  аэродинамический летательный аппарат, способный к вертикальному взлёту и посадке, в котором подъёмная сила создаётся комбинированной несущей системой, состоящей из одного или двух несущих винтов и крыла. Представляет собой комбинацию… …   Википедия

Двигатели внешнего сгорания

Энергосберегающие технологии: Теплоэнергетическая установка FX-38 на основе двигателя внешнего сгорания с сжиганием газообразного топлива

Принцип работы

Предлагаемая инновационная технология основана на использовании высокоэффективного четырехцилиндрового двигателя внешнего сгорания. Это - тепловой двигатель. Тепло может поставляться от внешнего источника тепла или производиться путем сжигания широкого спектра видов топлива внутри камеры сгорания.

Тепло поддерживается при постоянной температуре в одном отделении двигателя, где оно преобразуется в водород, находящийся под давлением. Расширяясь, водород толкает поршень. В отделении двигателя с низкой температурой водород охлаждается при помощи аккумуляторов тепла и охладителей жидкости. При расширении и сжатии водород вызывает возвратно-поступательное движение поршня, которое преобразуется во вращательное движение при помощи наклонной шайбы, которая приводит в действие стандартный, емкостный электрический генератор. В процессе охлаждения водорода также производится тепло, которое можно использовать для комбинированного производства электроэнергии и тепла во вспомогательных процессах.

Общее описание

Теплоэнергетическая установка FX-38 представляет собой единый модуль "двигатель-генератор", который включает двигатель внешнего сгорания, систему сгорания, работающую на пропане, природном газе, попутном нефтяном газе, других видах топлива со средней и низкой энергоемкостью (биогаз), индуктивный генератор, систему контроля двигателя, защищенный от атмосферных воздействий корпус со встроенной системой вентиляции и другое вспомогательное оборудование для параллельной работы с сетью высокого напряжения.

Номинальная мощность по электричеству при работе на природном газе или биогазе при частоте 50 Гц составляет 38 кВт. Кроме того, установка производит 65 кВт-ч извлекаемого тепла с поставляемой по специальному заказу системой комбинированного производства тепла и электроэнергии.

Установка FX-38 может быть оснащена различными опциями системы охлаждения для обеспечения гибкости схемы установки. Продукт разработан для простого подключения к электрическим контактам, системам подачи топлива и внешним трубам системы охлаждения, если оборудованы таковыми.

Дополнительные детали и опции

  • Модуль измерения мощности (обеспечивает установленный трансформатор тока для считывания на дисплее параметров переменного тока)
  • Опция дистанционного мониторинга по интерфейсу RS-485
  • Опции встроенного, либо удаленно смонтированного радиатора
  • Опция использования пропанового топлива
  • Опция использования природного газа
  • Опция использования попутного нефтяного газа
  • Опция использования топлива низкой энергоемкости

Установка FX-48 может применяться в нескольких вариантах следующим образом:

  • Параллельное подключение к высоковольтной сети при 50 Гц, 380 В переменного тока
  • Режим совместной выработки тепла и электроэнергии

Эксплуатационные характеристики установки

Выходная мощность складывается из электрической мощности и тепловой мощности. Для работы при частоте 50 Гц установка работает с тепловым коэффициентом 12230 кДж/кВт-ч (низшая теплота сгорания) и рассчитана на электрическую мощность 38 кВт. Показатель вырабатываемой электроэнергии 38 кВт включает паразитные потери, связанные с радиатором системы охлаждения, водяным насосом, вентилятором подачи воздуха в камеру сжигания, масляным насосом, контрольной системой и системой вентиляции блока.

В режиме производства электроэнергии и тепла при частоте 50 Гц установка производит 65 кВт-ч извлекаемого тепла. Продукт оборудован системой труб, готовой для подключения к поставляемому заказчиком теплообменнику типа жидкость/жидкость. Горячая сторона теплообменника представляет собой схему замкнутого цикла с охладителем кожуха двигателя и встроенным радиатором системы, если таковые присутствуют. Холодная сторона теплообменника предназначена для схем теплоприемника заказчика.

Техническое обслуживание

Установка предназначена для непрерывной работы и отбора мощности. Базовая проверка эксплуатационных характеристик проводится заказчиком с интервалом в 1000 часов и включает проверку системы водяного охлаждения и уровня масла. Через 10000 часов эксплуатации производится обслуживание передней части установки, включающее замену поршневого кольца, сальника штока, ремня привода и различных сальников. Специфические ключевые компоненты проверяются на износ. Скорость работы двигателя составляет 1500 оборотов в минуту для работы на частоте 50 Гц.

Бесперебойность

Бесперебойность работы установки составляет свыше 95%, исходя из интервалов эксплуатации, и учитывается при графике технического обслуживания.

Уровень звукового давления

Уровень звукового давления блока без встроенного радиатора составляет 64 дБА на расстоянии 7 метров. Уровень звукового давления блока с встроенным радиатором с вентиляторами охлаждения составляет 66 дБА на расстоянии 7 метров.

Выбросы

При работе на природном газе выбросы двигателя меньше или равны 0,0574 г/Нм3 NOx, 15,5 г/Нм3 летучих органических соединений и 0,345 г/Нм3 СО.

Газообразное топливо

Двигатель рассчитан на работу на различных типах газообразного топлива со значениями низшей теплоты сгорания от 13,2 до 90,6 МДж/Нм3, попутный нефтяной газ, природный газ, угольный метан, газ вторичной переработки, пропан и биогаз полигонов ТБО. Для охвата данного диапазона устройство может быть заказано со следующими конфигурациями топливной системы:

Система сгорания требует регулируемого давления подачи газа в 124-152 мбар для всех типов топлива.

Окружающая среда

Установка в стандартном исполнении работает при температуре окружающей среды от -20 до +50°С.

Описание установки

Теплоэнергетическая установка FX-38 полностью готова для выработки электроэнергии в заводской поставке. Встроенный электрический пульт монтируется на блок для удовлетворения требований интерфейса и контроля. Устойчивый к атмосферным воздействиям цифровой дисплей, встроенный в электрический пульт, обеспечивает оператору интерфейс запуска, остановки и перезапуска с помощью кнопок. Электрический пульт также служит основным местом подключения оконечного электрического устройства заказчика, а также с оконечными устройствами проводной связи.

Установка способна достигать выходной мощности полной нагрузки примерно через 3-5 минут с момента запуска в зависимости от изначальной температуры системы. Последовательность запуска и установки приводится в действие нажатием кнопки.

После команды пуска установка подключается к высоковольтной сети путем закрытия внутреннего контактора на сеть. Двигатель немедленно поворачивается, очищая камеру сжигания до открытия топливных клапанов. После открытия топливного клапана энергия подается на запальное устройство, поджигая топливо в камере сжигания. Наличие сжигания определяется по повышению температуры рабочего газа, что приводит в действие процедуру управления разгоном до точки рабочей температуры. После этого пламя остается самоподдерживающимся и постоянным.

После команды остановки установки сначала закрывается топливный клапан для прекращения процесса сжигания. По прошествии предварительно установленного времени, в течение которого механизм охлаждается, откроется контактор, отключая установку от сети. В случае если таковые установлены, вентиляторы радиатора могут работать некоторое время для уменьшении температуры охлаждающей жидкости.

В установке используется двигатель внешнего сгорания с постоянной длиной хода, подключенный к стандартному индукционному генератору. Устройство работает параллельно с высоковольтной сетью или параллельно с системой распределения энергии. Индукционный генератор не создает своего собственного возбуждения: он получает возбуждение от подключенного источника электросети. Если напряжение в электросети исчезает, установка отключается.

Описание узлов установки

Конструкция установки обеспечивает ее простой монтаж и подключение. Имеются внешние соединения для топливных труб, оконечных устройств электроэнергии, интерфейсов коммуникаций и, если это предусмотрено, внешнего радиатора и система труб теплообменника жидкость/жидкость. Установку можно заказать в комплекте со встроенным или удаленно монтированным радиатором и/или системой труб теплообменника жидкость/жидкость для охлаждения двигателя. Также предоставляются инструменты для безопасного отключения и логические схемы управления, разработанные специально для желаемого режима работы.

Кожух имеет две эксплуатационные панели на каждой стороне отделения двигатель/генератор и внешнюю однопетельную дверь для доступа к электрическому отделению.

Вес установки: около 1770 кг.

Двигатель является 4-цилиндровым (260 см3/цилиндр) двигателем внешнего сгорания, поглощающим тепло непрерывного сжигания газового топлива в камере внутреннего сгорания, и включает следующие встроенные компоненты:

  • Вентилятор подачи воздуха в камеру сгорания, приводится в действие двигателем
  • Воздушный фильтр камеры сгорания
  • Топливная система и кожух камеры сгорания
  • Насос для смазочного масла, приводится в действие двигателем
  • Охладитель и фильтр для смазочного масла
  • Водяной насос системы охлаждения двигателя, приводится в действие двигателем
  • Температурный датчик воды в системе охлаждения
  • Датчик давления смазочного масла
  • Датчик давления и температуры газа
  • Все необходимое контрольное и защитное оборудование

Характеристики генератора приводятся ниже:

  • Номинальная мощность 38 кВт при 50 Гц, 380 В переменного тока
  • Электрический КПД 95,0% при коэффициенте мощности 0,7
  • Возбуждение от коммунальной электросети при помощи индукционного мотора/генераторного возбудителя
  • Менее 5% общих гармонических искажений от отсутствия нагрузки до полной нагрузки
  • Класс изоляции F

Интерфейс оператора – цифровой дисплей обеспечивает управление установкой. Оператор может запустить и остановить установку с цифрового дисплея, посмотреть время работы, рабочие данные и предупреждения/сбои. При установке опционального модуля измерения мощности оператор может видеть многие электрические параметры, такие как вырабатываемая мощность, киловатт-часы, киловатт-амперы и коэффициент мощности.

Функция диагностики оборудования и сбора данных встроена в систему контроля установки. Диагностическая информация упрощает удаленный сбор данных, отчет по данным и устранение неисправностей устройства. Эти функции включают сбор системных данных, таких как информация о рабочем состоянии, все механические рабочие параметры, такие как температура и давление цилиндров, а также, если подключен опциональный измеритель мощности, – электрические параметры значений вырабатываемой мощности. Данные могут быть переданы через стандартный порт соединения RS-232 и показаны на персональном компьютере или ноутбуке при помощи программного обеспечения для сбора данных. Для нескольких установок или в случаях, когда расстояние передачи сигнала превышает возможности RS-232, для получения данных используется опциональный порт RS-485 с использованием протокола MODBUS RTU.

Для переноса горячих выхлопных газов от системы сгорания используются трубы из нержавеющей стали. К выхлопной трубе в месте выхода из кожуха прикреплена сбалансированная выхлопная заслонка с защитным колпаком от дождя и снега.

Для охлаждения могут применяться различные прикладные технологии и конфигураций:

Встроенный радиатор – предоставляет собой радиатор, рассчитанный на температуру окружающей среды до +50°C. Все трубы подключаются в заводских условиях. Это типичная технология в случае, если не используется утилизация отходящего тепла.

Внешний радиатор – предназначен для установки заказчиком, рассчитан на температуру окружающей среды до +50°C. Короткие несущие ножки поставляются с радиатором для монтажа на контактном столике. При необходимости установки в помещении можно использовать данный вариант вместо предоставления системы вентиляции, требуемой для подачи охлаждающего воздуха во встроенный радиатор.

Внешняя система охлаждения – предоставляет систему труб снаружи кожуха для поставляемой заказчиком системы охлаждения. Ей может выступать теплообменник или удаленно монтированный радиатор.

Хладагент состоит из 50% воды и 50% этиленгликоля по объему: можно заменить смесью пропиленгликоля и воды, при необходимости.

Установка FX-38 использует водород в качестве рабочего тела для приведения в движение поршней двигателей по причине высоких способностей водорода к передаче тепла. В нормальном режиме работы потребляется предсказуемое количество водорода из-за нормальных утечек, вызванных проницаемостью материала. Для учета этого темпа потребления место установки требует наличия одного или нескольких наборов баллонов с водородом, отрегулированных и подсоединенных к блоку. Внутри установки встроенный водородный компрессор увеличивает давление в баллоне до более высокого давления в двигателе и вводит малые порции по запросу встроенного программного обеспечения. Встроенная система не требует технического обслуживания, а баллоны подлежат замене в зависимости от работы двигателя.

Для подачи топлива поставляется труба со стандартной трубной резьбой 1 дюйм для всех стандартных типов топлива, за исключением низкоэнергетических вариантов, для которых используется стандартная трубная резьба 1 1/2 дюйма. Требования к давлению топлива для всех видов газообразного топлива составляют от 124 до 152 мбар.

Принцип работы 2х тактного и 4х тактного двигателей

При выборе силового оборудования необходимо уделить особое внимание типу двигателя. Существует два типа двигателей внутреннего сгорания: 2-х тактный и 4-х тактный.

Принцип действия двигателя внутреннего сгорания основан на использовании такого свойства газов, как расширение при нагревании, которое осуществляется за счет принудительного воспламенения горючей смеси, впрыскиваемой в воздушное пространство цилиндра.

Зачастую можно услышать, что 4-х тактный двигатель лучше, но чтобы понять, почему, необходимо более подробно разобрать принципы работы каждого.

Основными частями двигателя внутреннего сгорания, независимо от его типа, являются кривошипно-шатунный и газораспределительный механизмы, а также системы, отвечающие за охлаждение, питание, зажигание и смазку деталей.

Передача полезной работы расширяющегося газа осуществляется через кривошипно-шатунный механизм, а за своевременный впрыск топливной смеси в цилиндр отвечает механизм газораспре6деления.

Четырехтактные двигатели - выбор компании Honda

Четырехтактные двигатели экономичные, при этом их работа сопровождается более низким уровнем шума, а выхлоп не содержит горючей смеси и значительно экологичней чем у двухтактного двигателя.  Именно поэтому компания Honda при изготовлении силовой техники использует только четырехтактные двигатели. Компания Honda уже многие годы представляет свои четырехтактные двигатели на рынке силовой техники и добилась высочайших результатов, при этом их качество и надежность ни разу не подвергались сомнению. Но всё же, давайте рассмотрим принцип работы 2х и 4х тактных двигателей.

Принцип работы двухтактного двигателя

Рабочий цикл 2-х тактного двигателя состоит из двух этапов: сжатие и рабочий ход.

Сжатие. Основными положениями поршня являются верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Двигаясь от НМТ к ВМТ, поршень поочередно перекрывает сначала продувочное, а затем выпускное окно, после чего газ, находящийся в цилиндре, начинает сжиматься. При этом через впускное окно в кривошипную камеру поступает свежая горючая смесь, которая будет использована в последующем сжатии.

Рабочий ход. После того, как горючая смесь максимально сжата, она воспламеняется при помощи электрической искры, образуемой свечой. При этом температура газовой смеси резко возрастает и объем газа стремительно растет, осуществляя давление, при котором поршень начинает движение к НМТ. Опускаясь, поршень открывает выпускное окно, при этом продукты горения горючей смеси выбрасываются в атмосферу. Дальнейшее движение поршня приводит к сжатию свежей горючей смеси и открытию продувочного отверстия, через которое горючая смесь поступает в камеру сгорания.

Основным недостатком двухтактного двигателя является большой расход топлива, причем часть топлива не успевает принести пользу. Это связано с наличием момента, при котором продувочное и выпускное отверстие одновременно открыты, что приводит к частичному выбросу горючей смеси в атмосферу. Еще идёт постоянный расход масла, так как 2х тактные двигатели работают на смеси бензина и масла. Очередное неудобство - в необходимости постоянно готовить топливную смесь. Главными преимуществами двухтактного двигателя остаются его меньшие размеры и вес по сравнению с 4х тактным аналогом, но размеры силовой техники позволяют использовать на них 4х тактные двигатели и испытывать намного меньше хлопот в ходе эксплуатации. Так что уделом 2х тактных моторов осталось различное моделирование, в частности, авиамоделирование, где даже лишних 100г имеют значение. 

Принцип работы четырехтактного двигателя

Работа четырехтактного двигателя значительно отличается от работы двухтактного. Рабочий цикл четырехтактного двигателя состоит из четырех этапов: впуск, сжатие, рабочий ход и выпуск, что стало возможным за счет применения системы клапанов.

Во время впускного этапа поршень двигается вниз, открывается впускной клапан, и в полость цилиндра поступает горючая смесь, которая при смешении с остатками отработанной смеси образует рабочую смесь.

При сжатии поршень движется от НМТ к ВМТ, оба клапана закрыты. Чем выше поднимается поршень, тем выше давление и температура рабочей смеси.

Рабочий ход четырехтактного двигателя представляет собой принудительное движение поршня от ВМТ к НМТ за счет воздействия резко расширяющейся рабочей смеси, воспламененной искрой от свечи. Как только поршень достигает НМТ, открывается выпускной клапан.

Во время выпускного этапа продукты сгорания, вытесняемые поршнем, движущимся от НМТ к ВМТ, выбрасываются в атмосферу через выпускной клапан.

За счет применения системы клапанов четырехтактные двигатели внутреннего сгорания более экономичны и экологичны - ведь выброс неиспользованной топливной смеси исключен. В работе они значительно тише, чем 2х тактные аналоги, и в эксплуатации намного проще, ведь работают на обычном АИ-92, которым вы заправляете свою машину. Нет необходимости в постоянном приготовлении смеси масла и бензина, ведь масло в данных двигателях заливается отдельно в масляный картер, что значительно уменьшает его потребление. Вот именно поэтому компания Honda производит только 4х тактные двигатели и достигла в их производстве колоссальных успехов.

Бензиновый двигатель внутреннего сгорания: принцип работы

В основе принципа работы любого двигателя внутреннего сгорания лежит воспламенение небольшого количества топлива, обязательно высокоэнергетического, в небольшом замкнутом пространстве. При этом выделяется большое количество энергии, в виде теплового расширения нагретых газов. Так как давление под поршнем равно нормальному атмосферному, а компрессия в цилиндре намного превышает его, то под действием разницы давлений поршень совершает движение.

Бензиновый двигатель внутреннего сгорания: принцип работы

Для того чтобы двигатель внутреннего сгорания постоянно производил полезную механическую энергию, камеру сгорания цилиндра необходимо циклично заполнять новыми дозами воздушно-топливной смеси. В результате, поршень приводит в действие коленчатый вал, который и придает движение колесам автомобиля.

Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания бензина, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).

Схема работы бензинового двигателя внутреннего сгорания:

- такт впуска;

- такт сжатия;

- рабочий такт;

- такт выпуска.

Главным элементом двигателя внутреннего сгорания является поршень, который связан шатуном с коленчатым валом. Так называемый, кривошипно-шатунный механизм, преобразующий прямолинейное возвратно-поступательное движение поршня в радиальное движение коленвала.

Ниже более подробно расписан рабочий цикл бензинового двигателя:

1. Такт впуска

Поршень опускается из верхней крайней точки в нижнюю крайнюю точку, при этом кулачки распределительного вала открывают впускной клапан, и через него воздушно-топливная смесь поступает из карбюратора в камеру сгорания цилиндра. Когда поршень доходит до нижней мертвой точки, впускной клапан закрывается.

2. Такт сжатия

Поршень возвращается из нижней мертвой точки в верхнюю, сжимая топливную смесь. При этом существенно увеличивается температура смеси. Когда поршень доходит до верхней крайней точки, свеча зажигания воспламеняет сжатую рабочую смесь.

3. Рабочий такт

Воспламененная горючая смесь сгорает при высокой температуре, образовавшиеся газы моментально расширяются и толкают поршень вниз. Впускной и выпускной клапаны, во время этого такта, закрыты.

4. Такт выпуска

Коленвал продолжает вращаться по инерции, поршень идет в верхнюю мертвую точку. В то же время открывается клапан выпуска, и поршень вытесняет отработанные газы в выхлопную трубу. Когда он достигает верхней крайней точки, выпуск закрывается.

Следующий такт необязательно должен начинаться после окончания предыдущего. Такая ситуация, когда одновременно открыты оба клапана (впуска и выпуска), называется перекрытием клапанов. Это необходимо для эффективного наполнения цилиндра воздушно-топливным соединением, а также для более результативной очистки цилиндров от выхлопных газов. После этого рабочий цикл повторяется.

 

Отличительной особенностью двигателя внутреннего сгорания является то, что поршень двигается прямолинейно, а движение, осуществляющееся при сгорании топливной смеси, - вращательное. Линейный ход поршней преобразовывается в поворотное движение, необходимое для работы колес автомобиля, при помощи коленчатого вала.

Ниже рассмотрены основные элементы двигателя, которые принимают участие в преобразовании тепловой энергии в механическую.

1. Свеча зажигания

Искровая свеча вырабатывает электрическую искру, которая воспламеняет воздушно-топливную смесь. Для равномерной и бесперебойной работы поршня искра должна появляться в заданный момент времени.

2. Клапаны

Выпускные и впускные клапаны закрываются и открываются в заданный момент, впуская воздух в цилиндр и выпуская отработанные газы. Во время процесса горения топливной смеси оба клапана закрыты. Клапан выпуска открывается до достижения поршня крайней нижней точки и остается открытым до прохождения поршня к верхней крайней точке. К этому моменту впускной уже будет открыт.

3. Поршень

Образующиеся во время сгорания топливной смеси горячие газы выдавливают поршень, передавая энергию через шатун и палец коленвалу. Для сохранения компрессии в цилиндрах на поршень устанавливаются уплотняющие кольца, изготовленные из высокопрочного чугуна. Для повышения износостойкости поршневые кольца покрываются тонким слоем пористого хрома. К основным характеристикам колец относятся следующие показатели: высота, наружный диаметр, радиальная толщина, форма разреза в стыке и упругость. Внешний диаметр поршневого кольца должен соответствовать внутреннему диаметру цилиндра. В настоящее время применяются узкие кольца (высотой - 1,5-2 мм) и широкие (высотой - 2,5-3 мм). Первые более надежны при частом движении поршня. Радиальная толщина увеличивается с возрастанием диаметра цилиндра. Износ поршневых колец происходит, в среднем, через каждые 3 тысячи километров пробега.

4. Шатун

Шатун соединяет коленчатый вал с поршнем. Вращение шатуна является двухсторонним, это нужно для того, чтобы его угол мог изменяться в зависимости от местоположения поршня, обеспечивая движение коленвала. Обычно шатуны бывают стальными, иногда - алюминиевыми.

5. Коленчатый вал

Поворот коленчатого вала осуществляется вследствие вертикального хода поршня. Коленвал приводит в движение колеса автомобиля.

 

Современные двигатели внутреннего сгорания делятся на два типа: карбюраторные и инжекторные.

В карбюраторном двигателе процесс приготовления воздушно-топливной смеси происходит в специальном устройстве - карбюраторе. В нем, используя аэродинамическую силу, горючее смешивается с воздушным потоком, засасываемым двигателем.

В инжекторном типе двигателя топливо впрыскивается под давлением в поток воздуха при помощи специальных форсунок. Дозировка горючего происходит при помощи электронного блока управления, который открывает форсунку электрическими импульсами. В двигателях устаревшей конструкции, этот процесс происходит с использованием специфической механической системы. Последний тип почти полностью вытеснил устаревшие карбюраторные силовые агрегаты. Это произошло из-за современных экологических стандартов, которые устанавливают высокие нормы чистоты выхлопных газов. Что повлекло за собой внедрение новых эффективных нейтрализаторов выхлопа (каталитических конвертеров или катализаторов). Такие системы нейтрализации требуют постоянного состава отработанных газов, который могут обеспечить только инжекторные системы впрыска топлива, контролируемые электронным блоком управления. Нормальная работа катализатора обеспечивается исключительно при соблюдении стабильного состава выхлопных газов. Необходимостью этого является то, что он требует содержания определенных пропорций кислорода в отработанных газах. Для соблюдения подобных условий в таких системах катализации обязательно устанавливается кислородный датчик (лямбда-зонд), который анализирует процент содержания кислорода в выхлопных газах и контролирует точность пропорций оксида азота, несгоревших остатков топлива и углеводородов.

 

Основными вспомогательными системами являются:

Система зажигания. Отвечает за поджигание топливной смеси в нужный момент. Она бывает контактной, бесконтактной и микропроцессорной. Система контактного типа состоит из распределителя-прерывателя, катушки, выключателя зажигания и свечей. Бесконтактная система аналогична предыдущей, только вместо прерывателя стоит индукционный датчик. Управление системой зажигания микропроцессорного типа осуществляется специальным компьютерным блоком, в ее состав входит датчик положения коленвала, коммутатор, блок управления зажиганием, катушки, датчик температуры двигателя и свечи. В двигателях с инжекторной системой к ней добавляется еще датчик положения дроссельной заслонки и термоанемометрический датчик массового расхода воздуха.

Система запуска двигателя. Состоит из специального электромотора (стартера), подключенного к аккумулятору, или механического стартера, использующего физические усилия человека. Применение этой системы объясняется тем, что для запуска рабочего цикла двигателя необходимо, чтобы коленчатый вал произвел хотя бы один оборот.

Система выпуска выхлопных газов. Обеспечивает своевременное удаление продуктов горения топливной смеси из цилиндров. Включает в себя выпускной коллектор, катализатор и глушитель.

Система приготовления воздушно-топливной смеси. Предназначена для приготовления и впрыска смеси горючего с воздухом, в камеру сгорания цилиндров двигателя. Может быть карбюраторной или инжекторной.

Система охлаждения. Современная система состоит из вентилятора, радиатора, термостата, расширительного бачка, жидкостного насоса, датчика температуры, рубашки и головки охлаждения блока цилиндров. Предназначена для создания и поддержания приемлемого температурного режима работы ДВС. Обеспечивает отвод тепла от цилиндров клапанной системы и поршневой группы. Может быть воздушной, жидкостной или гибридной.

Система смазки. Состоит из масляного фильтра, маслонасоса с маслоприемником, каналов в блоке и головках цилиндров для впрыска масла под высоким давлением, поддона картера. Предназначена для подачи автомобильного масла с целью уменьшения трения и охлаждения, к взаимодействующим деталям двигателя. Также циркуляция масла смывает нагар и продукты механического износа.

Источник: Авто Релиз.ру.

Трехфазные, двухфазные и однофазные двигатели - как они устроены, для чего предназначены | Электронные компоненты. Дистрибьютор и интернет-магазин

Электродвигатели - однофазные и трехфазные - имеют простую работу. Они преобразуют электрическую энергию в механическую в виде вращения вала. Это возможно благодаря использованию магнитного поля.Очевидно, что в зависимости от приложения для генерации трафика следует использовать разные решения.

Наиболее распространенными промышленными трехфазными асинхронными двигателями являются двигатели с короткозамкнутым ротором или кольцевые двигатели. Это в основном связано с их простой конструкцией, простотой эксплуатации и возможностью достижения гораздо большей мощности, чем у однофазных двигателей . Они используются в компрессорах, токарных, фрезерных станках и многих других устройствах.

Трехфазный двигатель с короткозамкнутым ротором

Трехфазный двигатель с короткозамкнутым ротором состоит из ротора и статора с пазами.В них размещаются обмотки. В случае ротора это алюминиевые или медные стержни, соединяющие два кольца друг с другом. Таким образом, они образуют что-то вроде клетки. Стержни, из которых построена клетка, расположены наклонно, что позволяет выполнять ровные повороты. Этот двигатель еще называют компактным. Это связано с тем, что электрическая цепь ротора в этом типе привода всегда короткозамкнутая.

Трехфазные двигатели в предложении TME

Основным недостатком асинхронных двигателей с короткозамкнутым ротором являются высокие пусковые токи при низком пусковом моменте.Двигатели с коротким замыканием потребляют ток, в пять-восемь раз превышающий номинальный ток. Это приводит к нагреву обмоток, что является недостатком. Более того, такое высокое потребление тока может вызвать колебания напряжения в сети. По этой причине двигатели мощностью более 4 кВт нельзя даже напрямую подключать к сети. Поэтому для ввода в эксплуатацию предусмотрены некоторые конкретные решения.

Одним из них является использование схемы звезда-треугольник. Это означает, что при пуске двигатель некоторое время работает с меньшим крутящим моментом, а напряжение на каждой обмотке равно фазному напряжению.После частичного разгона двигателя переключатель «звезда-треугольник» меняет соединения обмоток на такое, при котором начало одной обмотки встречается с концом другой, нейтраль не используется, и двигатель работает на номинальной мощности.

Второй способ безопасного запуска двигателя с короткозамкнутым ротором — использование устройства, называемого «мягкий пуск». Представляет собой электронную систему из тиристоров и симисторов, которая предназначена для плавного повышения напряжения, подаваемого на обмотки.В большинстве современных строящихся проектов чаще выбирают именно это решение, чем классический переключатель звезда-треугольник.

Трехфазный роторный двигатель

Кольцевой двигатель — второй по популярности тип трехфазного привода. Его конструкция более сложная, что выливается в более высокие затраты, связанные с приобретением и эксплуатацией данного типа мотора. При этом в пазах находится трехсоставная обмотка, соединенная звездой, т. е. концы каждой из них (обычно обозначаемые буквами U, V, W) соединяются в общей точке.Остальные три конца (K, L, M) соединены с контактными кольцами, на которые опираются щетки. Концы этих обмоток выведены наружу, что позволяет подключить к обмоткам дополнительные цепи, обеспечивающие, например, плавный пуск.

Запуск кольцевых двигателей можно решить с помощью дополнительных резисторов в цепи ротора. Они позволяют уменьшить ток ротора и, следовательно, ток, потребляемый от сети. Это решение используется все реже из-за высокой стоимости и сложной структуры.

Другим решением является использование инвертора. Это решение тоже недешевое, хотя и открывает большие возможности. Это позволяет точно контролировать скорость вращения двигателя. Инверторы также используются в паре с двигателями с короткозамкнутым ротором, а это значит, что в промышленности все реже встречаются все более дорогие кольцевые двигатели.

Чтобы заставить двигатель двигаться, необходимо создать вращающееся магнитное поле. В случае трехфазных двигателей он генерируется самостоятельно.Это возможно благодаря фазовому сдвигу на 120 градусов друг к другу. Иначе обстоит дело с однофазными двигателями. Там вы должны вызвать фазовый сдвиг самостоятельно.

Однофазный двигатель

Однофазные двигатели редко используются в промышленности, но обычно используются в быту, например, в бытовых приборах и электроинструментах. Это связано с тем, что большинству этих устройств не требуется слишком много энергии, и они должны быть просты в использовании.Поэтому они должны работать после включения в обычную электрическую розетку, без необходимости иметь в квартире трехфазную установку. Однофазные двигатели обычно обеспечивают мощность примерно до 2 кВт, что достаточно для большинства бытовых приборов.

Однофазные двигатели в предложении TME

Как заставить двигаться однофазный двигатель?

Конструкция однофазного двигателя в чем-то похожа на рассмотренные ранее трехфазные двигатели .Однако из-за того, что у него всего одна обмотка, вращающееся магнитное поле при подаче напряжения не возникает, а его отсутствие означает, что ротор не вращается. Однако, если мы переместим вал двигателя, он будет вращаться сам по себе. Однако ручное перемещение двигателя небезопасно и не удобно. Поэтому конденсатор и подключенная к нему дополнительная обмотка, называемая пусковой обмоткой, используются для возбуждения движения. Обычно он сдвинут по фазе на 90 градусов по отношению к основной обмотке.Пусковая обмотка используется только при запуске двигателя. После достижения двигателем номинального крутящего момента его необходимо отключить. Если бы этого не произошло, система могла бы сгореть из-за выделяющегося в ней тепла.

Двухфазный двигатель

Очень редким типом электродвигателя являются двухфазные асинхронные двигатели . Когда-то они встречались в промышленных растворах, хотя и там были редкостью. В настоящее время они практически не используются и отнесены почти исключительно к разряду курьезов.Двухфазные двигатели устроены аналогично однофазным двигателям и работают по тому же принципу. Основное отличие состоит в том, что роль пусковой обмотки, которая встречается в однофазных двигателях, играет симметричная основной обмотке, геометрически сдвинутая на 90 градусов. Для получения сдвига фаз, близкого к 90 градусам, необходимо, как и в случае с однофазными двигателями , использовать конденсатор нужной емкости. Кроме того, необходимо сделать соответствующую двухфазную электроустановку, что нецелесообразно — подавляющее большинство приемников питается от одной или трех фаз.По этой причине использование двухфазных двигателей не было очень распространенным явлением. В настоящее время они полностью вытеснены однофазными и трехфазными приводами, которые гораздо более практичны и универсальны.

Однофазные и трехфазные двигатели имеют широкий спектр применения и поэтому имеют различные параметры. Чтобы выбрать двигатель, подходящий для вашего проекта, ознакомьтесь с предложением TME по однофазным и трехфазным электродвигателям. Широкий ассортимент нашего магазина позволяет легко найти двигатель, который можно использовать как в промышленном цеху, так и в вашей квартире.Наше предложение адресовано как индивидуальным, так и бизнес-клиентам, поэтому в нашем ассортименте вы обязательно найдете то, что ищете.

.

Изучите тему двигателя постоянного тока: для чего он нужен, как устроен,...

Автор: ~ Меган Добавлено: 5.11.2011 (12:16)

Развивать тему двигатель постоянного тока: для чего он нужен, как устроен, принцип работы, применение.

Задача закрыта. Автор задачи уже выбрал лучшее решение или оно просрочено.

Аналогичные материалы

Следуя своему жизненному пути, мы часто сталкиваемся со злом.Многие вещи или явления вызывают у нас крайне негативные эмоции. Я не верю, чтобы в мыслях каждого из нас хотя бы раз возникало желание исправить мир, очистить его от того зла, которым он запятнан. К сожалению, у нас не всегда хватает сил и мужества для воплощения в жизнь наших высоких идеалов. Чувство беспомощности не раз...

1.Атом состоит из ядра, вокруг которого вращаются электроны. 2. В ядре имеются положительно заряженные протоны и электрически нейтральные нейтроны. 3. Электроны движутся вокруг ядра в области, называемой электронными оболочками.4. Валентные электроны – это электроны последней оболочки. 5. Атомный номер (порядковый номер - число протонов в ядре атома данного элемента.)...

Исследование шагового двигателя

Тема урока: Правильный выбор прически и окончательная укладка. 1. Адаптация рабочего места к выполняемой деятельности 2. Умение пользоваться приборами и оборудованием 3. Правильный выбор прически и укладки 4. Исполнительская деятельность Цели обучения СООБЩЕНИЯ: Студент знает основные технологии парикмахерского искусства.Ученик знает судьбу, использованную в проекте...

Каждый двигатель внутреннего сгорания можно охарактеризовать несколькими его основными размерами. К ним относятся: 1. Размеры двигателя 2. Степень сжатия 3. Частота вращения, крутящий момент, мощность 4. Эффективность 5. Расход топлива 6. Эксплуатационные характеристики двигателя Итак, давайте посмотрим, что стоит за этими параметрами и что они показывают...

.

Найдите подходящий электродвигатель за 5 простых шагов

Вам необходимо заменить электродвигатель и вы хотите знать, какой двигатель вам нужен. Найти подходящий двигатель на замену не всегда просто. Возможно, вам потребуется заменить более старую модель, которая устарела или больше не производится. Чтобы помочь вам, мы объясняем в 5 шагов, как выбрать правильный электродвигатель в интернет-магазине ABF.

Для целей этого блога мы предположим, что ищем трехфазный двигатель, так как это наиболее часто используемый тип электродвигателя.Во многих случаях всю информацию можно найти на заводской табличке, прикрепленной к двигателю.

Ниже приведен пример шильдика электродвигателя старого поколения от Siemens, с пояснением справа. Опираясь на эту информацию, вы можете самостоятельно проверить, есть ли аналогичный товар в нашем интернет-магазине.

Паспортная табличка Siemens старого типа.

Какой электродвигатель мне нужен?

ШАГ 1: Определите номинальную мощность

Номинальная мощность электродвигателя обычно выражается в киловаттах (кВт).Для более старых двигателей мощность также может быть выражена в лошадиных силах (л.с.). Вот коэффициент пересчета: 1 л.с. = 0,75 кВт.

Мощность электродвигателя основана на максимальной мощности при постоянной нагрузке. В этом случае электродвигатель рассчитан на мощность 1,5 кВт (или 2 л.с.).

Выбор номинальной мощности.

При выборе 1,5 кВт и Siemens в нашем интернет-магазине с электродвигателями отображаются все двигатели Siemens с номинальной мощностью 1,5 кВт (см. в интернет-магазине).Однако вам все равно придется выбирать другие характеристики двигателя. Мы объясним, как это сделать в следующих шагах.

ШАГ 2: Определите структуру электродвигателя

Электродвигатель можно прикрепить несколькими способами, например, только с помощью опоры, внутреннего фланца, внешнего фланца или их комбинации. Структура (или способ крепления) определяется кодом европейского стандарта IEC 34-7.

Вкратце, существует пять основных способов крепления:
• B3: только опора
• B5: внешний фланец (диаметр фланца больше диаметра двигателя)
• B14: внутренний фланец (диаметр фланца меньше диаметра двигателя)
• B35: опора + внешний фланец (соединение B3 и B5)
• B34: опора + внутренний фланец (соединение B3 и B14)

Тип исполнения часто указан на заводской табличке.Однако его также можно определить на основании приведенных ниже цифр.

Варианты монтажа B3, B5, B14, B34 и B35.

Электродвигатель в нашем примере имеет тип крепления «В14»; то есть внутренний воротник. Этот тип конструкции можно определить по резьбовым отверстиям на передней поверхности двигателя. Для конструкций типа «B5» диаметр фланца больше диаметра двигателя, а отверстия под болты не имеют резьбы.

Выбор способа крепления.

СОВЕТ: Чтобы повысить шансы найти нужный двигатель, если вам нужен двигатель с типом крепления «B14», выберите оба варианта: «B14» и «B34» (внутренний опорный фланец), так как большинство двигателей, поставляемых ABF, устанавливаются со съемными лапками.Лишив мотор типа В34, вы получаете его аналог типа В14 (посмотреть в интернет-магазине).

Двигатель типа B34, вид спереди. Комбинация внутренней рамы с резьбовыми отверстиями на лицевой стороне (B14) и двигателя на лапах (B3). Пример электродвигателя со съемными ножками (B14/B34).

ШАГ 3: Определите номинальную скорость

Номинальная скорость обычно указывается на заводской табличке. Это фактическая скорость вращения выходного вала, выраженная в «оборотах в минуту» или «об./ мин». Скорость, указанная на заводской табличке ниже, составляет 2860 об/мин.
Альтернативным способом выражения этой скорости является указание количества полюсов; двухполюсный двигатель соответствует 3000 об/мин. Для 4 полюсов это 1500 об/мин, для 6 полюсов 1000 об/мин и так далее.

По техническим причинам фактическая частота вращения вала всегда незначительно отличается и ниже значений, указанных выше. Поэтому следует осторожно округлять значения.
Общее правило расчета следующее: скорость двигателя = 6000 ÷ количество полюсов.
Значит для 4-х полюсного двигателя это будет: 6000 ÷ 4 = 1500 об/мин.

Ниже приведена сводка теоретических оборотов в минуту и ​​соответствующее количество полюсов.

Сводка по количеству полюсов и теоретической скорости вращения.

В интернет-магазине выбрать ближайшее (округленное) значение скорости. В качестве примера здесь используется двухполюсный двигатель со скоростью вращения 3000 об/мин./ мин (смотреть в интернет-магазине). 3000 об/мин - это теоретическая скорость.

Поэтому в интернет-магазине необходимо выбрать правильную скорость вокруг желаемой скорости. В нашем примере — 2-х полюсный двигатель со скоростью 3000 оборотов в минуту.

Выбор правильной скорости.

ШАГ 4: Определение размера кадра

Еще одним важным параметром является размер корпуса электродвигателя. Поскольку размеры для европейского рынка определены в стандарте IEC, электродвигатели разных марок, но с совместимыми характеристиками, часто могут использоваться взаимозаменяемо.Большинство производителей используют одни и те же размеры для данного размера.

Наиболее важные размеры в соответствии со стандартом IEC:

  • А (расстояние между монтажными отверстиями, перпендикулярно двигателю)
  • B (расстояние между монтажными отверстиями, параллельно двигателю)
  • C (расстояние вала до первого монтажного отверстия)
  • D (диаметр выходного вала со стороны привода)
  • E (длина вала)
  • H (высота вала)

Для стандартных электродвигателей IEC большинство размеров напрямую связаны с высотой вала или размером корпуса двигателя.Это расстояние между центром выходного вала и нижней частью опор двигателя типа B3, отмеченное на приведенной ниже диаграмме буквой «H».

Пример размеров электродвигателя типа В3.

В нашем случае типоразмер электродвигателя 90. В интернет-магазине выберите «90» в качестве типоразмера IEC (просмотреть в интернет-магазине).

Выбор размера кадра IEC.

ШАГ 5: Определите правильный класс энергоэффективности

С 16 июня 2011 г. большинство двигателей, доступных на рынке, должны иметь маркировку в соответствии с директивой IE и класс энергоэффективности.

Это классы энергоэффективности для электродвигателей:
IE1 = стандартная энергоэффективность (EFF2)
IE2 = высокая энергоэффективность (EFF1)
IE3 = повышенная энергоэффективность
IE4 = наивысшая энергоэффективность

С 1 января 2017 года все новые электродвигатели мощностью 0,75 кВт и более должны соответствовать стандарту IE3 (хотя из этого правила есть исключения).

Электродвигатель в нашем примере относится к классу IE1.Чтобы соответствовать применимым нормам, в нашем интернет-магазине необходимо выбрать класс IE3 (см. в интернет-магазине).

Выбор энергоэффективности.

Подходящий электродвигатель?

В нашем интернет-магазине мы выбрали следующие фильтры:
• Номинальная мощность: 1,5 кВт
• Фитинг B14 (внутренний фланец) и B34 (нога + внутренний фланец)
• Номинальная скорость: 2 полюса / 3000 об/мин
• Размер IEC рамки: 90
• Энергоэффективность: IE3 = повышенный

Это должно позволить вам найти подходящий электродвигатель.Отображаемые двигатели должны соответствовать техническим данным электродвигателя, который вы хотите заменить (см. в интернет-магазине).

При сравнении шильдиков старого и нового моторов видно, что технические данные совпадают.
Обратите внимание, что этот конкретный двигатель предназначен для крепления типа «B34», однако он оснащен съемными ножками и внутренним фланцем (опция Siemens).

Сравните старые и новые шильдики Siemens.

Паспортная табличка Siemens

На приведенном ниже рисунке поясняется заводская табличка Siemens. Примечание: это относится к «стандартному» двигателю Siemens. Для заказных двигателей Siemens или двигателей с некоторыми дополнительными опциями в конце номера артикула появляется «-Z».

В приведенных выше примерах "-Z" обозначает опцию съемных ножек на двигателе B34.

Пояснение к заводской табличке Siemens.

Мы надеемся, что вы найдете подходящий электродвигатель в нашем интернет-магазине, выполнив следующие 5 простых шагов. Однако, если у вас есть какие-либо дополнительные вопросы, пожалуйста, свяжитесь с нашим специалистом по электродвигателям для получения дополнительной информации. Мы можем помочь!

.

Двигатели для электровелосипедов — руководство по электроприводу

Хотя для правильной работы электровелосипеда необходимо множество компонентов, сердцем всей конструкции всегда является двигатель. Именно он обеспечивает нужную мощность для поддержки велосипедиста во время езды. Давайте подробнее рассмотрим наиболее распространенные типы приводов и рассмотрим, на что стоит обратить внимание перед покупкой электрики.

Двигатель — сердце электровелосипеда.(фото Superior)

Как работает электрический велосипед?

Значительная часть незнакомых с предметом отождествляет электрику с чем-то вроде более слабого скутера, у которого просто электродвигатель вместо двигателя внутреннего сгорания. Однако разница между двумя автомобилями гораздо больше. Прежде всего, электровелосипед требует вращения педалей, а электрическая система предназначена только для помощи в этой поездке, она никогда не заменяет реальную работу водителя. Это облегчает подъем в гору, вращение педалей менее увлекательно, но все же необходимо для движения.Двигатель получает энергию от подключенной к нему батареи, которую необходимо регулярно заряжать. Интенсивность работы самого агрегата зависит от датчика скорости, чаще всего встроенного контроллера и рычага или управляющего компьютера.

Также стоит упомянуть важнейшее преимущество вспомогательных двигателей перед самоходными двигателями – экономичность вождения. Из всех автомобилей электрические велосипеды являются самыми дешевыми в эксплуатации, потребляя электроэнергии всего ок.2 злотых за 100 км. Неудивительно, что в последнее время они набирают все большую популярность. Их чаще всего используют горожане, хотя на рынке немало высокопроизводительных моделей, предназначенных для сложных маршрутов на горных велосипедах. Когда дело доходит до диапазона электрического велосипеда, это зависит от многих факторов, включая геометрию велосипеда и частоту вращения педалей.

Прежде чем разделить электродвигатель для велосипеда на разные типы, стоит сначала представить конструкцию самого мотовелосипеда.Благодаря этому мы будем лучше понимать, с чем имеем дело.

Конструкция электровелосипеда

Мы уже определили, что является сердцем электровелосипеда, теперь стоит рассмотреть, что позволяет ему правильно функционировать. Конечно, элемент, который поставляет энергию нашему двигателю, то есть аккумулятор, должен быть в начале списка. Обычно он устанавливается в одном из трех мест:

  • на задней стойке,
  • в месте, предназначенном для флягодержателя,
  • внутри рамы.

Еще одной обязательной частью этой системы является управляющий компьютер, который в самых простых вариантах позволяет отображать текущую скорость и состояние заряда аккумулятора электровелосипеда. В более продвинутых моделях с его помощью мы можем контролировать работу суппорта и переключаться между заданными программами.

Для бесперебойной работы управляющего компьютера в нем используются два небольших компонента, которые, однако, необходимы для работы электровелосипеда.Контроллер и датчик скорости, потому что мы говорим о них, обычно размещаются на аккумуляторной рейке, кронштейне или внутри корпуса двигателя.

Электровелосипеды также используют тормозные рычаги, которые позволяют отключать двигатель или переводить его в энергосберегающий режим.

Электровелосипед с центрально расположенным двигателем. (фото Superior)

Какой электродвигатель выбрать для велосипеда?

В текущей ситуации на рынке электровелосипедов потенциал мотора не очень важен.Все из-за довольно строгих правил, ограничивающих его мощность до 250 Вт и напряжение до 48 В. При этом сама электровелопомощь может работать только до 25 км/ч. Однако это не означает, что мы не можем найти различий между отдельными моделями. Давайте рассмотрим все самые важные вопросы и параметры.

Наиболее важные параметры при выборе мотора:

Начнем с ключевых технических моментов, которые, несмотря на ограничения правилами электровелосипедов, по-прежнему играют большую роль при принятии решения о покупке.

Крутящий момент электродвигателя

Первым является крутящий момент двигателя, на практике - кривошипно-шатунного привода или ступицы. Проще говоря, этот параметр определяет, насколько эффективно наш мотор будет крутить колесо. В первую очередь это сказывается на достигнутом таким образом ускорении.

Крутящий момент указывается в ньютон-метрах (Нм). Стоит помнить, что максимальное значение почти всегда заложено в характеристиках двигателя. В зависимости от класса мотоцикла он обычно составляет от 60 Нм у более слабых двигателей до более 100 Нм у самых мощных агрегатов.Мы должны решить, какой крутящий момент будет правильным для наших нужд на основе наиболее частых маршрутов.

Напряжение в зависимости от крутящего момента

Напряжение — это параметр, напрямую связанный с крутящим моментом. Чем мощнее двигатель велосипеда, тем больший крутящий момент мы можем себе позволить. По закону для электровелосипедов напряжение ограничено максимальным значением 48В. Большинство моделей на рынке используют 24В или 36В. Чем выше выбрано напряжение, тем меньше будет энергопотребление двигателя, а значит, меньше нагрузка на аккумулятор и продлится его срок службы.Проблема с блоками питания с более высоким напряжением будет заключаться в большем весе.

Мощность двигателя

Мощность двигателя ограничена европейским законодательством до 250 Вт. Это не значит, однако, что мы не встретим более сильных отрядов. Электровелосипеды, импортированные с Востока, обычно имеют мощность 500 Вт. На рынке можно найти нестандартные модели с электродвигателем для велосипедов мощностью 5000 Вт. Принимая решение о покупке более производительного агрегата, мы должны помнить о важном вопросе. Модели с электродвигателем для велосипеда мощностью 3000 Вт, а также все остальные со значениями, превышающими стандарт, должны иметь ограничение мощности (блокировку) в соответствии со стандартами ЕС, чтобы быть юридически отнесенными к велосипедам.

Стоит отметить, что эти ограничения распространяются на дороги общего пользования, если мы берем свой электровелосипед только по бездорожью или катаемся на нем по частной собственности, мы можем смело выбирать электровелосипед, например, с электродвигателем для велосипеда мощностью 2000 Вт. .

Электрический велосипед - центральный двигатель или колесо?

В то время, когда подавляющее большинство доступных моделей имеют одинаковую мощность, наиболее важным различием между различными типами двигателей является. Используются два типа:

  • центральный двигатель - кривошип в сборе
  • ступичный двигатель - ступица в сборе (передняя и задняя)

Сначала рассмотрим первый.Этот тип электропривода для велосипеда монтируется в кривошипе, и для его использования требуется специально приспособленная для этого рама. Несмотря на это ограничение, решение считается наиболее универсальным, все благодаря равной нагрузке на оба колеса. Центр тяжести, расположенный таким образом, отлично подходит как для рекреационного использования, так и для людей, занимающихся более серьезной ездой на велосипеде.

Однако для спортивных целей обычно рекомендуется вариант со ступицей, а точнее вариант с задней ступицей.Такое крепление означает, что мотор находится на ступице заднего колеса, что делает его более нагруженным, а велосипед приобретает большую маневренность. Решение идеально подходит, особенно для холмистой местности, где нам часто приходится преодолевать крутые подъемы и более сложные спуски.

Передняя ступица в сборе, т. е. двигатель расположен в передней ступице, предназначена, скорее, для использования в рекреационных целях, городских или треккинговых велосипедах. Идеально сочетается с более прямым силуэтом велосипедиста.

Производитель велосипедных двигателей – имеет ли значение марка оборудования?

Конкуренция на рынке электрических велосипедов жесткая, и отдельные производители активно борются за внимание велосипедистов. Таким образом, мы можем встретить очень разное оборудование, хотя на рынке фактически есть два доминирующих бренда.

Немецкий концерн Bosch, один из крупнейших поставщиков электрических компонентов в мире, является одним из лиц мира электровелосипедов. Имеет очень широкий ассортимент продукции, чаще всего используется в моделях более высокого класса.Среди двигателей нашего западного соседа мы можем найти как предназначенные для города (серия Active Line или Active Line Plus), так и для высокопроизводительной езды на МТБ (серия Performance Line CX).

Вторым наиболее часто используемым брендом в электронных велосипедах является, и это вряд ли кого-то удивит, японская Shimano. Компания из Страны восходящего солнца – настоящий гигант в мире велоаксессуаров, который также предлагает качественные, разнообразные электроприводы. Мы можем встретить серии E5000 и E6000 для прогулочных велосипедов, а также серии E7000 и E8000 для электрических горных моделей.

Хотя эти два велосипедных гиганта поделили между собой большую часть рынка электровелосипедов, это не значит, что мы не можем встретиться с оборудованием других известных и заслуживающих внимания производителей. На первый план выходят следующие бренды: Borse – немецкий производитель, специализирующийся на спортивных моделях; Panasonic – известный японский бренд, выпускающий электронику; Yamaha — из автомобильного сегмента, которая в последнее время также завоевывает рынок электровелосипедов. Но и такие компании, как Impulse, AEG, Bafang или Fazua, ценятся велосипедистами всего мира.

Теперь давайте взглянем на самые популярные доступные двигатели для электровелосипедов:

Электродвигатели Bosch - Таблица спецификаций

Электродвигатели Shimano - Таблица спецификаций Электродвигатели Brose - Таблица спецификаций

Электродвигатели Yamaha - Таблица спецификаций

Panasonic Электродвигатели. Таблица технических характеристик

Импульсные электродвигатели. Таблица технических характеристик

Электродвигатели AEG. велосипед?

Покупка готового электровелосипеда — всегда самое верное решение.Однако, если вы очень привязаны к своему изношенному велосипеду, вы можете преобразовать его в электрическую версию. Как это делается?

Прежде всего, мы должны сначала решить, хотим ли мы использовать готовый набор или собрать аксессуары самостоятельно. Последний вариант рекомендуется для более опытных самодельщиков.

Способ сборки можно разделить на два типа, в зависимости от того, какие типы электродвигателей находятся в интересующей нас области.Версия кривошипа потребует другого подхода, а версия втулки потребует другого подхода. Однако стоит помнить, что не каждый мотор подойдет к каждой раме, перед покупкой нового привода для своего велосипеда всегда нужно проверять его совместимость, чтобы сберечь себе нервы и лишнюю работу.

В случае кривошипного варианта мы должны сначала снять кривошип и нижний кронштейн, за которым мы будем монтировать двигатель, что обычно делается с помощью специальных стабилизирующих крюков. После присоединения кривошипа и каретки нам еще предстоит соединить двигатель с датчиками, аккумулятором и дисплеем с помощью кабелей с герметичными разъемами.

Процесс несколько проще для узлов. Просто снимите наше текущее колесо и замените его версией со встроенным приводом и прикрутите шестерни. Затем подключаемся к двигателю с остальным набором, так же, как и при сборке кривошипно-шатунного механизма. Конечно, этот процесс может быть разным, в зависимости от модели двигателя или рамы велосипеда, но все подробные инструкции всегда дает инструкция по сборке, прилагаемая к конкретному набору.

.

Промышленная автоматизация | Kacperek: Технология привода

Что такое инвертор
Инвертор обычно называют микропроцессорным преобразователем частоты. Инвертор представляет собой силовое электронное устройство, используемое для регулирования скорости вращения трехфазного электродвигателя путем изменения частоты и напряжения тока, питающего двигатель.

Для чего нужен инвертор
С помощью преобразователей частоты можно в широких пределах плавно регулировать скорость привода (редуктор, соединенный с двигателем).С помощью инвертора можно запустить привод, разогнав его даже до удвоенной номинальной скорости. Функции плавного пуска и плавного останова инвертора позволяют:,

  • ограничивать пусковой ток двигателя,
  • снижать динамические нагрузки на привод,
  • устанавливать время торможения.

Кроме того, инверторы имеют ряд встроенных программируемых функций и устройств, которые можно использовать на входе и выходе инвертора.Примеры функций инвертора:
Бессенсорное векторное управление и UF - управление двигателем, позволяющее независимо контролировать скорость и крутящий момент машины, благодаря чему достигается максимальный крутящий момент даже при нулевой скорости.
Автонастройка - процедура автоматической идентификации параметров двигателя, необходимая для корректного управления двигателем в векторном режиме, заключающаяся в измерении тока, сопротивления и индуктивности двигателя.
ПИД-регулятор - режим регулирования с обратной связью. Инвертор призван уменьшить разницу между уставкой (установленной в инверторе) и значением обратной связи (полученным от аналоговых датчиков объекта управления, например, давление, уровень жидкости в баке).
Помехоподавляющий фильтр - подавляет помехи в ходе напряжения и электрического тока, излучаемые инвертором, обеспечивая правильную работу инвертора других устройств в сети.
Резистор тормозной - предотвращает появление слишком высокого напряжения при слишком быстром снижении частоты инвертора, т.е. торможении двигателем; получает напряжение от обмоток двигателя и преобразует его в тепло;
Тормозной модуль - транзистор, который включает цепь тормозного резистора, когда двигатель находится в рекуперативном диапазоне.
Вышеупомянутые функции являются лишь примерами наиболее часто используемых дополнительных функций инверторов.

Как выбрать инвертор для привода
Используемый инвертор должен иметь мощность, большую или равную мощности приводного электродвигателя. Можно использовать один инвертор для одновременного управления несколькими приводами. В такой ситуации при выборе преобразователя частоты следует суммировать номинальные мощности электродвигателей и добавить примерно 20 % запаса для обеспечения корректной работы всей системы. В приложении, где один инвертор управляет несколькими двигателями, двигатели подключаются к инвертору параллельно, что заставляет их работать с одинаковой скоростью.

Однофазные инверторы - как это работает
Однофазные приводы переменного тока преобразуют одну фазу 1x230В в три фазы 3x230В. Следовательно, если мы подключим трехфазные электродвигатели 3х230В с переключением треугольником к однофазным инверторам, мы сможем питать трехфазные приводы от одной фазы.

.

Электродвигатель – изобретения и открытия 9000 1

Замена одного вида энергии на другой давно интересовала людей.

С открытием электричества возникла идея попытаться преобразовать энергию электрического тока в механическую энергию. Это стало возможным благодаря наблюдению за существованием электродвижущей силы, которая использовалась для создания электродвигателя.

Задача при конструировании двигателя состояла в том, чтобы найти способ преобразовать кратковременное движение проводника «по течению» в магнитном поле в непрерывное вращательное движение.

К созданию электродвигателя положили начало опыты английского физика и химика Майкла Фарадея, сумевшего сконструировать устройство, превращающее электричество в непрерывное механическое движение. Его опыт, известный как: электрических оборотов , заключался в погружении одного конца проволоки в ртуть, заполняющую сосуд. Он поместил стержневой магнит в центр сосуда. Прикрепив батарею к верхней части проволоки и ртути в сосуде, он заставил проволоку вращаться вокруг магнита.

Электродвигатель работает следующим образом: ротор вращается за счет того, что токонесущие обмотки помещены в магнитное поле. Электромагнит (статор) создает магнитное поле. Ток подается на обмотки ротора. Магнитные поля обмотки и статора взаимодействуют, заставляя ротор немного вращаться. Затем ток подается на следующую обмотку; весь процесс очень быстрый и двигатель крутится.

Используя опыт Фарадея, в 1822 году английский математик и физик Питер Барлоу первым сконструировал прототип электрического двигателя, позже названного Колесом Барлоу.

Первый действующий электродвигатель был построен и запатентован в 1837 году в США. Его создатель, Томас Дэвенпорт, построил свой первый двигатель постоянного тока еще в 1834 году и использовал его для привода электропоезда — игрушки, которая движется по круговой дорожке. Двигатель 1837 года был снабжен электромагнитом и развивал скорость 450 оборотов в минуту, и конструктор использовал его для привода дрели и токарного станка по дереву. Позже Давенпорт построил двигатель еще большего размера для привода ротационной печатной машины, на которой он начал печатать первый в США журнал об электричестве.

В 1834 году русский физик немецкого происхождения Мориц Х. Якоби сконструировал электродвигатель постоянного тока с питанием от гальванических элементов.

Первый миниатюрный двигатель был построен Томасом Алвой Эдисоном в 1880 году для привода электрической ручки, предназначенной для изготовления множителей с точками. Двигатель имел размеры 2,5 см на 4 сантиметра и развивал скорость около 4000 об/мин, приводя в движение вибрирующую иглу в держателе, которая проделывала отверстия в матрице, образующие контуры букв.Все питалось от бифокальной батареи. Электрическая ручка Эдисона (было построено около 60 000) успешно дублировала документы, пока не была устранена изобретением пишущей машинки

.


По виду питающего напряжения электродвигатели подразделяются на:
1. Электродвигатели постоянного тока,
2. Электродвигатели переменного тока,
3. Универсальные двигатели.

.

Двигатели постоянного тока часть 1 - электродвигатели и классические двигатели PMDC

Существуют десятки типов электродвигателей. Они работают на том, что в магнитном поле на проводник с током действует сила, называемая силой Лоренца. Магнитное поле может создаваться постоянными магнитами или электромагнитами. В многосерийной статье мы не будем заниматься двигателями переменного тока. Для начала мы обсудим (наиболее популярный) тип двигателей постоянного тока, а именно коллекторные двигатели с постоянным магнитом, обозначенные как PMDC (Permanent Magnet Direct Current Motors).

Стоит ли обращать внимание на такие архаичные элементы в то время, когда мы все чаще встречаем шаговые двигатели и бесколлекторные бесколлекторные двигатели постоянного тока, обладающие удивительно высокой мощностью при своих малых размерах?

Это того стоит, потому что честные коллекторные двигатели постоянного тока, также известные как Коллекторные двигатели постоянного тока или щеточные двигатели постоянного тока, как маленькие, так и большие, по-прежнему пользуются огромной популярностью.В настоящее время они все чаще управляются импульсным способом, называемым ШИМ, и тогда возникают дополнительные явления и проблемы. И именно проблем и заблуждений, связанных с импульсным управлением, особенно при вращении в обе стороны и торможении, достаточный повод вспомнить основы и обсудить, как управлять такими моторами.

Фото 1 Двигатель постоянного тока диаметром 4 мм

Электродвигатели — Обзор

Крошечные моторчики PMDC диаметром от 4мм (фото 1) работают в наших телефонах как вибраторы.Мощные двигатели постоянного тока продолжали работать и ...

Чтобы скачать электронную версию, содержащую эту статью, подпишитесь

Купи сейчас

.

Смотрите также