Что такое паровая машина


Паровая машина - это... Что такое Паровая машина?

Парова́я маши́на — тепловой двигатель внешнего сгорания, преобразующий энергию пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу.

Горизонтальная стационарная двухцилиндровая паровая машина для привода заводских трансмиссий. Конец XIX в. Экспонат Музея Индустриальной Культуры. Нюрнберг

Значение паровых машин

Паровые машины использовались как приводной двигатель в насосных станциях, локомотивах, на паровых судах, тягачах, паровых автомобилях и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции XVIII века. Поздние паровые машины были вытеснены двигателями внутреннего сгорания, паровыми турбинами и электромоторами, КПД которых выше.

Паровые турбины, формально являющиеся разновидностью паровых машин, до сих пор широко используются в качестве приводов генераторов электроэнергии. Примерно 86 % электроэнергии, производимой в мире, вырабатывается с использованием паровых турбин.

Принцип действия

Для привода паровой машины необходим паровой котёл. Расширяющийся пар давит на поршень или на лопатки паровой турбины, движение которых передаётся другим механически. Одно из преимуществ двигателей внешнего сгорания в том, что из-за отделения котла от паровой машины можно использовать практически любой вид топлива — от кизяка до урана.

Изобретение и развитие

Первое известное устройство, приводимое в движение паром, было описано Героном Александрийским в первом столетии. Пар, выходящий по касательной из дюз, закреплённых на шаре, заставлял последний вращаться. Реальная паровая турбина была изобретена намного позже, в средневековом Египте, арабским философом, астрономом и инженером XVI века Таки ад-Дином Мухаммедом (англ.). Он предложил метод вращения вертела посредством потока пара, направляемого на лопасти, закреплённые по ободу колеса. Подобную машину предложил в 1629 году итальянский инженер Джованни Бранка для вращения цилиндрического анкерного устройства, которое поочерёдно поднимало и отпускало пару пестов в ступах. Паровой поток в этих ранних паровых турбинах был не концентрированным, и большая часть его энергии рассеивалась во всех направлениях, что приводило к значительным потерям энергии.

Однако дальнейшее развитие парового двигателя требовало экономических условий, в которых разработчики двигателей могли бы воспользоваться их результатами. Таких условий не было ни в античную эпоху, ни в средневековье, ни в эпоху Возрождения. Только в конце 17-го столетия паровые двигатели были созданы как единичные курьёзы. Первая машина была создана испанским изобретателем Херонимо Аянсом де Бомонт, изобретения которого повлияли на патент Т. Севери (см. ниже). Принцип действия и применение паровых машин было описано также в 1655 году англичанином Эдвардом Сомерсетом. В 1663 году он опубликовал проект и установил приводимое в движение паром устройство для подъёма воды на стену Большой башни в замке Реглан (углубления в стене, где двигатель был установлен, были ещё заметны в 19-ом столетии). Однако никто не был готов рисковать деньгами для этой новой революционной концепции, и паровая машина осталась неразработанной. Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х в Париже он в сотрудничестве с голландским физиком Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нём. Видя неполноту вакуума, создаваемого при этом, Папен после приезда в Англию в 1680 году создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив. Система работала, как демонстрационная модель, но для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Поэтому Папен считается изобретателем парового котла, проложив таким образом путь к паровому двигателю Ньюкомена. Однако конструкцию действующей паровой машины он не предложил. Папен также проектировал лодку, приводимую в движение колесом с реактивной силой в комбинации концепций Таки ад-Дина и Севери; ему также приписывают изобретение множества важных устройств, например, предохранительного клапана.

Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на производстве паровым двигателем была «пожарная установка», сконструированная английским военным инженером Томасом Севери в 1698 году. На своё устройство Севери в 1698 году получил патент. Это был поршневой паровой насос, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации, так как вследствие высокого давления пара ёмкости и трубопроводы двигателя иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт изобретатель назвал его «другом рудокопа».

Затем английский кузнец Томас Ньюкомен в 1712 году продемонстрировал свой «атмосферный двигатель». Это был усовершенствованный паровой двигатель Севери, в котором Ньюкомен существенно снизил рабочее давление пара. Первым применением двигателя Ньюкомена была откачка воды из глубокой шахты. В шахтном насосе коромысло было связано с тягой, которая спускалась в шахту к камере насоса. Возвратно-поступательные движения тяги передавались поршню насоса, который подавал воду наверх. Именно двигатель Ньюкомена стал первым паровым двигателем, получившим широкое практическое применение, с которым принято связывать начало промышленной революции в Англии.

Первая в России двухцилиндровая вакуумная паровая машина была спроектирована механиком И. И. Ползуновым в 1763 году и построена в 1764 году для приведения в действие воздуходувных мехов на Барнаульских Колывано-Воскресенских заводах.

Дальнейшим повышением эффективности было применение пара высокого давления (американец Оливер Эванс и англичанин Ричард Тревитик). Тревитик успешно построил промышленные однотактовые двигатели высокого давления, известные как «корнуэльские двигатели». Они работали с давлением 50 фунтов на квадратный дюйм, или 345 кПа (3,405 атмосферы). Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования. Французский изобретатель Николас-Йозеф Куньо в 1769 году продемонстрировал первое действующее самоходное паровое транспортное средство: «fardier à vapeur» (паровую телегу). Возможно, его изобретение можно считать первым автомобилем. Самоходный паровой трактор оказался очень полезным в качестве мобильного источника механической энергии, приводившего в движение другие сельскохозяйственные машины: молотилки, прессы и др. В 1788 году пароход, построенный Джоном Фитчем, уже осуществлял регулярное сообщение по реке Делавер между Филадельфией (штат Пенсильвания) и Берлингтоном (штат Нью-Йорк). Он поднимал на борт 30 пассажиров и шёл со скоростью 7—8 узлов. 21 февраля 1804 года на металлургическом заводе Пенидаррен в Мертир-Тидвиле в Южном Уэльсе демонстрировался первый самоходный железнодорожный паровой локомотив, построенный Ричардом Тревитиком.

Паровые машины с возвратно-поступательным движением

Двигатели с возвратно-поступательным движением используют энергию пара для перемещения поршня в герметичной камере или цилиндре. Возвратно-поступательное действие поршня может быть механически преобразовано в линейное движение поршневых насосов или во вращательное движение для привода вращающихся частей станков или колёс транспортных средств.

Вакуумные машины

Гравюра двигателя Ньюкомена. Это изображение скопировано с рисунка в работе Дезаглирса «курс экспериментальной философии», 1744, которая является изменённой копией гравюры Генри Битона, датированной 1717 годом. Вероятно, изображён второй двигатель [хой]Ньюкомена, установленный приблизительно в 1714 в угольной шахте Гриф в Уоркшире.

Ранние паровые машины назывались вначале «огневыми машинами», а также «атмосферными» или «конденсирующими» двигателями Уатта. Они работали на вакуумном принципе и поэтому известны также как «вакуумные двигатели». Такие машины работали для привода поршневых насосов, во всяком случае, нет никаких свидетельств о том, что они использовались в иных целях. При работе паровой машины вакуумного типа в начале такта пар низкого давления впускается в рабочую камеру или цилиндр. Впускной клапан после этого закрывается, и пар охлаждается, конденсируясь. В двигателе Ньюкомена охлаждающая вода распыляется непосредственно в цилиндр, и конденсат сбегает в сборник конденсата. Таким образом создаётся вакуум в цилиндре. Атмосферное давление в верхней части цилиндра давит на поршень, и вызывает его перемещение вниз, то есть рабочий ход.

Поршень связан цепью с концом большого коромысла, вращающегося вокруг своей середины. Насос под нагрузкой связан цепью с противоположным концом коромысла, которое под действием насоса возвращает поршень к верхней части цилиндра силой гравитации. Так происходит обратный ход. Давление пара низкое и не может противодействовать движению поршня.[1]

Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным и неэффективным, тем не менее, эти паровые машины позволяли откачивать воду с большей глубины, чем это было возможно до их появления. В 1774 году появилась версия паровой машины, созданная Уаттом в сотрудничестве с Мэттью Боултоном, основным нововведением которой стало вынесение процесса конденсации в специальную отдельную камеру (конденсатор). Эта камера помещалась в ванну с холодной водой, и соединялась с цилиндром трубкой, перекрывающейся клапаном. К конденсационной камере была присоединена специальная небольшая вакуумная помпа (прообраз конденсатного насоса), приводимая в движение коромыслом и служащая для удаления конденсата из конденсатора. Образовавшаяся горячая вода подавалась специальным насосом (прообразом питательного насоса) обратно в котёл. Ещё одним радикальным нововведением стало закрытие верхнего конца рабочего цилиндра, в верхней части которого теперь находился пар низкого давления. Этот же пар присутствовал в двойной рубашке цилиндра, поддерживая его постоянную температуру. Во время движения поршня вверх этот пар по специальным трубкам передавался в нижнюю часть цилиндра, для того, чтобы подвергнуться конденсации во время следующего такта. Машина, по сути, перестала быть «атмосферной», и её мощность теперь зависела от разницы давлений между паром низкого давления и тем вакуумом, который удавалось получить.

версия паровой машины, созданная Уаттом

В паровой машине Ньюкомена смазка поршня осуществлялась небольшим количеством налитой на него сверху воды, в машине Уатта это стало невозможным, поскольку в верхней части цилиндра теперь находился пар, пришлось перейти на смазку смесью тавота и нефти. Такая же смазка использовалась в сальнике штока цилиндра.[1]

Вакуумные паровые машины, несмотря на очевидные ограничение их эффективности, были относительно безопасны, использовали пар низкого давления, что вполне соответствовало общему невысокому уровню котельных технологий XVIII века. Мощность машины ограничивалась низким давлением пара, размерами цилиндра, скоростью сгорания топлива и испарения воды в котле, а также размерами конденсатора. Максимальный теоретический КПД был ограничен относительно малой разницей температур по обе стороны поршня; это делало вакуумные машины, предназначенные для промышленного использования, слишком большими и дорогими.

Приблизительно в 1811 году Ричарду Тревитнику потребовалось усовершенствовать машину Уатта, для того чтобы приспособить её к новым котлам Корниша. Давление пара над поршнем достигло 275 кПа (2,8 атмосферы), и именно оно давало основную мощность для совершения рабочего хода; кроме того, был существенно усовершенствован конденсатор. Такие машины получили название машин Корниша, и строились вплоть до 1890-х годов. Множество старых машин Уатта было реконструировано до этого уровня. Некоторые машины Корниша имели весьма большой размер.

Паровые машины высокого давления

В паровых машинах пар поступает из котла в рабочую камеру цилиндра, где расширяется, оказывая давление на поршень и совершая полезную работу. После этого расширенный пар может выпускаться в атмосферу или поступать в конденсатор. Важное отличие машин высокого давления от вакуумных состоит в том, что давление отработанного пара превышает атмосферное или равно ему, то есть вакуум не создаётся. Отработанный пар обычно имел давление выше атмосферного и часто выбрасывался в дымовую трубу, что позволяло увеличить тягу котла.

Важность увеличения давления пара состоит в том, что при этом он приобретает более высокую температуру. Таким образом, паровая машина высокого давления работает при большей разнице температур чем та, которую можно достичь в вакуумных машинах. После того, как машины высокого давления заменили вакуумные, они стали основой для дальнейшего развития и совершенствования всех возвратно-поступательных паровых машин. Однако то давление, которое считалось в 1800 году высоким (275—345 кПа), сейчас рассматривается как очень низкое — давление в современных паровых котлах в десятки раз выше.

Дополнительное преимущество машин высокого давления состоит в том, что они намного меньше при заданном уровне мощности, и соответственно, существенно менее дорогие. Кроме того, такая паровая машина может быть достаточно лёгкой и компактной, чтобы использоваться на транспортных средствах. Возникший в результате паровой транспорт (паровозы, пароходы) революционизировал коммерческие и пассажирские перевозки, военную стратегию, и вообще затронул практически каждый аспект общественной жизни.

Паровые машины двойного действия

Следующим важным шагом в развитии паровых машин высокого давления стало появление машин двойного действия. В машинах одиночного действия поршень перемещался в одну сторону силой расширяющегося пара, но обратно он возвращался или под действием гравитации, или за счёт момента инерции вращающегося маховика, соединённого с паровой машиной.

В паровых машинах двойного действия свежий пар поочередно подается в обе стороны рабочего цилиндра, в то время как отработанный пар с другой стороны цилиндра выходит в атмосферу или в конденсатор. Это потребовало создания достаточно сложного механизма парораспределения. Принцип двойного действия повышает скорость работы машины и улучшает плавность хода.

Поршень такой паровой машины соединён со скользящим штоком, выходящим из цилиндра. К этому штоку крепится качающийся шатун, приводящий в движение кривошип маховика. Система парораспределения приводится в действие другим кривошипным механизмом. Механизм парораспределения может иметь функцию реверса для того, чтобы можно было менять направление вращения маховика машины.

Паровая машина двойного действия примерно вдвое мощнее обычной паровой машины, и кроме того, может работать с намного более лёгким маховиком. Это уменьшает вес и стоимость машин.

Большинство возвратно-поступательных паровых машин использует именно этот принцип работы, что хорошо видно на примере паровозов. Когда такая машина имеет два или более цилиндров, кривошипы устанавливаются со сдвигом в 90 градусов для того, чтобы гарантировать возможность запуска машины при любом положении поршней в цилиндрах. Некоторые колёсные пароходы имели одноцилиндровую паровую машину двойного действия, и на них приходилось следить, чтобы колесо не останавливалось в мёртвой точке, то есть в таком положении, при котором запуск машины невозможен.

В 1832 году впервые в России на заводе была построена паровая машина с кривошипно-шатунным механизмом для военного парохода «Геркулес». Это была первая в мире удачная для пароходов паровая машина без балансира в 240 сил.[2] Англичане дважды, в 1822 и 1826 годах, делали попытку изготовить такие машины для своих пароходов, но они оказались неудачными и их пришлось заменить обычными балансирнами машинами. Лишь на пароходе "Горгон" ("Gorgon"), спущенном на воду в 1837 году, они смогли установить машину прямого действия (без балансира), которая стала работать нормально.[3]

Парораспределение

Индикаторная диаграмма, показывающая четырёхфазный цикл поршневой паровой машины двойного действия

В большинстве возвратно-поступательных паровых машин пар изменяет направление движения в каждом такте рабочего цикла, поступая в цилиндр и выходя из него через один и тот же коллектор. Полный цикл двигателя занимает один полный оборот кривошипа и состоит из четырёх фаз — впуска, расширения (рабочая фаза), выпуска и сжатия. Эти фазы контролируются клапанами в «паровой коробке», смежной с цилиндром. Клапаны управляют потоком пара, последовательно соединяя коллекторы каждой стороны рабочего цилиндра с впускным и выпускным коллектором паровой машины. Клапаны приводятся в движение клапанным механизмом какого-либо типа. Простейший клапанный механизм даёт фиксированную продолжительность рабочих фаз и обычно не имеет возможности изменять направление вращения вала машины. Большинство клапанных механизмов более совершенны, имеют механизм реверса, а также позволяют регулировать мощность и крутящий момент машины путём изменения «отсечки пара», то есть изменяя соотношение фаз впуска и расширения. Так как обычно один и тот же скользящий клапан управляет и входным и выходным потоком пара, изменение этих фаз также симметрично влияет на соотношения фаз выпуска и сжатия. И здесь существует проблема, поскольку соотношение этих фаз в идеале не должно меняться: если фаза выпуска станет слишком короткой, то большая часть отработанного пара не успеет покинуть цилиндр, и создаст существенное противодавление на фазе сжатия. В 1840-х и 1850-х годах было совершено множество попыток обойти это ограничение, в основном путём создания схем с дополнительным клапаном отсечки, установленном на основном распределительном клапане, но такие механизмы не показывали удовлетворительной работы, к тому же получались слишком дорогими и сложными. С тех пор обычным компромиссным решением стало удлинение скользящих поверхностей золотниковых клапанов с тем, чтобы впускное окно было перекрыто дольше, чем выпускное. Позже были разработаны схемы с отдельными впускными и выпускными клапанами, которые могли обеспечить практически идеальный цикл работы, но эти схемы редко применялись на практике, особенно на транспорте, из-за своей сложности и возникающих эксплуатационных проблем.[4][5]

Сжатие

Выпускное окно цилиндра паровой машины перекрывается несколько раньше, чем поршень доходит до своего крайнего положения, что оставляет в цилиндре некоторое количество отработанного пара. Это означает, что в цикле работы присутствует фаза сжатия, формирующая так называемую «паровую подушку», замедляющую движение поршня в его крайних положениях. Кроме того, это устраняет резкий перепад давления в самом начале фазы впуска, когда в цилиндр поступает свежий пар.

Опережение

Описанный эффект «паровой подушки» усиливается также тем, что впуск свежего пара в цилиндр начинается несколько раньше, чем поршень достигнет крайнего положения, то есть присутствует некоторое опережение впуска. Это опережение необходимо для того, чтобы перед тем, как поршень начнёт свой рабочий ход под действием свежего пара, пар успел бы заполнить то мёртвоё пространство, которое возникло в результате предыдущей фазы, то есть каналы впуска-выпуска и неиспользуемый для движения поршня объём цилиндра.[6]

Простое расширение

Простое расширение предполагает, что пар работает только при расширении его в цилиндре, а отработанный пар выпускается напрямую в атмосферу или поступает в специальный конденсатор. Остаточное тепло пара при этом может быть использовано, например, для обогрева помещения или транспортного средства, а также для предварительного подогрева воды, поступающей в котёл.

Компаунд

В процессе расширения в цилиндре машины высокого давления температура пара падает пропорционально его расширению. Поскольку теплового обмена при этом не происходит (адиабатический процесс), получается, что пар поступает в цилиндр с большей температурой, чем выходит из него. Подобные перепады температуры в цилиндре приводят к снижению эффективности процесса.

Один из методов борьбы с этим перепадом температур был предложен в 1804 году английским инженером Артуром Вульфом, который запатентовал Компаундную паровую машину высокого давления Вульфа. В этой машине высокотемпературный пар из парового котла поступал в цилиндр высокого давления, а после этого отработанный в нём пар с более низкой температурой и давлением поступал в цилиндр (или цилиндры) низкого давления. Это уменьшало перепад температуры в каждом цилиндре, что в целом снижало температурные потери и улучшало общий коэффициент полезного действия паровой машины. Пар низкого давления имел больший объём, и поэтому требовал большего объёма цилиндра. Поэтому в компаудных машинах цилиндры низкого давления имели больший диаметр (а иногда и большую длину) чем цилиндры высокого давления.

Такая схема также известна под названием «двойное расширение», поскольку расширение пара происходит в две стадии. Иногда один цилиндр высокого давления был связан с двумя цилиндрами низкого давления, что давало три приблизительно одинаковых по размеру цилиндра. Такую схему было легче сбалансировать.

Двухцилиндровые компаундные машины могут быть классифицированы как:

  • Перекрёстный компаунд — Цилиндры расположены рядом, их паропроводящие каналы перекрещены.
  • Тандемный компаунд — Цилиндры располагаются последовательно, и используют один шток.
  • Угловой компаунд — Цилиндры расположены под углом друг к другу, обычно 90 градусов, и работают на один кривошип.

После 1880-х годов компаундные паровые машины получили широкое распространение на производстве и транспорте и стали практически единственным типом, используемым на пароходах. Использование их на паровозах не получило такого широкого распространения, поскольку они оказались слишком сложными, частично из-за того, что сложными были условия работы паровых машин на железнодорожном транспорте. Несмотря на то, что компаундные паровозы так и не стали массовым явлением (особенно в Великобритании, где они были очень мало распространены и вообще не использовались после 1930-х годов), они получили определённую популярность в нескольких странах.[7]

1907

Множественное расширение

Упрощённая схема паровой машины с тройным расширением.
Пар высокого давления (красный цвет) от котла проходит через машину, выходя в конденсатор при низком давлении (голубой цвет). 1890-е

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четырёхкратного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объём которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых турбинах используется тот же принцип разделения потока на секции высокого, среднего и низкого давления.

Прямоточные паровые машины

Прямоточная паровая машина

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остаётся более или менее постоянным. Прямоточные машины одиночного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одиночного, так и двойного действия.

Паровые турбины

Паровая турбина представляет собой барабан либо серию вращающихся дисков, закреплённых на единой оси, их называют ротором турбины, и серию чередующихся с ними неподвижных дисков, закреплённых на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные (в активных, либо подобные в реактивных) лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в неё подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии. Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).

Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания.

Основной сферой применения паровых турбин является выработка электроэнергии (около 86 % мирового производства электроэнергии производится паровыми турбинами), кроме того, они часто используются в качестве судовых двигателей (в том числе на атомных кораблях и подводных лодках). Было также построено некоторое количество паротурбовозов, но они не получили широкого распространения и были быстро вытеснены тепловозами и электровозами.

Другие типы паровых двигателей

Кроме поршневых паровых машин, в 19-м веке активно использовались роторные паровые машины. В России, во второй половине 19-го века они назывались «коловратные машины» (то есть «вращающие колесо» от слова «коло» — «колесо»). Их было несколько типов, но наиболее успешной и эффективной была «коловратная машина» петербургского инженера-механика Н. Н. Тверского. Паровой двигатель Н. Н. Тверского . Машина представляла собой цилиндрический корпус, в котором вращался ротор-крыльчатка, а запирали камеры расширения особые запорные барабанчики. «Коловратная машина» Н. Н. Тверского не имела ни одной детали, которая бы совершала возвратно-поступательные движения и была идеально уравновешена. Двигатель Тверского создавался и эксплуатировался преимущественно на энтузиазме его автора, однако он использовался во многих экземплярах на малых судах, на фабриках и для привода динамо-машин. Один из двигателей даже установили на императорской яхте «Штандарт», а в качестве расширительной машины — с приводом от баллона со сжатым газом аммиаком, этот двигатель приводил в движение в подводном положении одну из первых экспериментальных подводных лодок — «подводную миноноску», которая испытывалась Н. Н. Тверским в 80-х годах 19-го столетия в водах Финского залива. Однако со временем, когда паровые машины были вытеснены двигателями внутреннего сгорания и электромоторами, «коловратная машина» Н. Н. Тверского была практически забыта. Однако эти «коловратные машины» можно считать прообразами сегодняшних роторных двигателей внутреннего сгорания.

Применение

Паровые машины могут быть классифицированы по их применению следующим образом:

Стационарные машины

Паровой молот Паровая машина на старой сахарной фабрике, Куба

Стационарные паровые машины могут быть разделены на два типа по режиму использования:

  • Машины с переменным режимом, к которым относятся машины металлопрокатных станов, паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.
  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях, а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

Транспортные машины

Паровоз

Паровые машины использовались для привода различных типов транспортных средств, среди них:

  • Пароход
  • Сухопутные транспортные средства:
  • Паровой самолёт.

В России первый действующий паровоз был построен Е. А. и М. Е. Черепановыми на Нижне-Тагильском заводе в 1834 году для перевозки руды. Он развивал скорость 13 вёрст в час и перевозил более 200 пудов (3,2 тонны) груза. Длина первой железной дороги составляла 850 м.

Преимущества паровых машин

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах.

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга, которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930-х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса. При этом паровая машина паровоза продолжает развивать тяговое усилие даже в случае остановки колёс (упор в стену), чем отличается от всех других видов двигателей, используемых на транспорте.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла. КПД тепловой машины равен

,
где
Wout — механическая работа, Дж;
Qin — затраченное количество теплоты, Дж.

Тепловой двигатель не может иметь КПД больший, чем у цикла Карно, в котором количество теплоты передается от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура. Следовательно, для паровых двигателей необходимы максимально высокая температура T1 в начале цикла (достигаемая, например, с помощью пароперегрева) и как можно более низкая температура T2 в конце цикла (например, с помощью конденсатора):

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 — 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 — 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.

Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.

У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C.

Нетрадиционные машины

На 4-м канале Британского телевидения с 1998 года проводится реалити-шоу «Scrapheap Challenge» («Вызов со свалки»), в котором друг против друга выступают две команды из трёх постоянных участников и одного специалиста. Командам даётся 10 часов для постройки заданной машины из частей, которые они находят на свалке металлолома, а затем устраиваются гонки. В 2007 году команды британских и американских инженеров строили колёсный пароход в духе Брюнеля. При этом британская команда использовала для управления паровой машиной электрическую систему с микровыключателями и соленоидными клапанами. Их пароход набрал скорость, близкую к дизельной лодке американской команды.

См. также

История паровых машин

Россия
Великобритания

Примечания

  1. Hulse David K (1999): «The early development of the steam engine»; TEE Publishing, Leamington Spa, UK, ISBN, 85761 107 1 (англ.)
  2. Н. А. Залесский «„Одесса“ выходит в море / возникновение парового мореплавания на Чёрном море 1827—1855», Ленинград, «Судостроение», 1987 год, страница 8.
  3. Н. А. Залесский «„Одесса“ выходит в море / возникновение парового мореплавания на Чёрном море 1827—1855», Ленинград, «Судостроение», 1987 год, страницы 8 и 9.
  4. Riemsdijk, John van: (1994) Compound Locomotives, pp. 2-3; Atlantic Publishers Penrhyn, England. ISBN 0-906899-61-3 (англ.)
  5. Carpenter, George W. & contributors (2000): La locomotive à vapeur: pp. 56-72; 120 et seq; Camden Miniature Steam Services, UK. ISBN 0-9536523-0-0 (фр.)
  6. Bell A.M. Locomotives. — London: Virtue and Company. — P. pp61-63. (англ.)
  7. Riemsdijk, John van: (1994) Compound Locomotives, Atlantic Publishers Penrhyn, England. ISBN 0-906899-61-3  (англ.)

Литература

  • Паровые машины // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  • Паровые машины. История, описание и приложение их. 1838 г., СПб.: тип. Эдуарда Праца и Ко. — 234 с.
  • Брандт А. А. Очерк истории паровой машины и применения паровых двигателей в России, СПб., 1892.
  • Тонков Р. Р. К истории паровых машин в России. — «Горный журнал», № 6, 1902 г.
  • Лебедев В. И. Занимательная техника в прошлом. Ленинград: «Время», 1933 г. — 198 с.
  • Люди русской науки: Очерки о выдающихся деятелях естествознания и техники / Под ред. С. И. Вавилова. — М., Л.: Гос. изд-во техн.-теоретической лит-ры, 1948 г.
  • Конфедератов И. Я. Иван Иванович Ползунов. — М. — Л.: Госэнергоиздат, 1954 г. — 296 с.

Ссылки

Паровая машина - это... Что такое Паровая машина?

Парова́я маши́на — тепловой двигатель внешнего сгорания, преобразующий энергию пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу.

Горизонтальная стационарная двухцилиндровая паровая машина для привода заводских трансмиссий. Конец XIX в. Экспонат Музея Индустриальной Культуры. Нюрнберг

Значение паровых машин

Паровые машины использовались как приводной двигатель в насосных станциях, локомотивах, на паровых судах, тягачах, паровых автомобилях и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции XVIII века. Поздние паровые машины были вытеснены двигателями внутреннего сгорания, паровыми турбинами и электромоторами, КПД которых выше.

Паровые турбины, формально являющиеся разновидностью паровых машин, до сих пор широко используются в качестве приводов генераторов электроэнергии. Примерно 86 % электроэнергии, производимой в мире, вырабатывается с использованием паровых турбин.

Принцип действия

Для привода паровой машины необходим паровой котёл. Расширяющийся пар давит на поршень или на лопатки паровой турбины, движение которых передаётся другим механически. Одно из преимуществ двигателей внешнего сгорания в том, что из-за отделения котла от паровой машины можно использовать практически любой вид топлива — от кизяка до урана.

Изобретение и развитие

Первое известное устройство, приводимое в движение паром, было описано Героном Александрийским в первом столетии. Пар, выходящий по касательной из дюз, закреплённых на шаре, заставлял последний вращаться. Реальная паровая турбина была изобретена намного позже, в средневековом Египте, арабским философом, астрономом и инженером XVI века Таки ад-Дином Мухаммедом (англ.). Он предложил метод вращения вертела посредством потока пара, направляемого на лопасти, закреплённые по ободу колеса. Подобную машину предложил в 1629 году итальянский инженер Джованни Бранка для вращения цилиндрического анкерного устройства, которое поочерёдно поднимало и отпускало пару пестов в ступах. Паровой поток в этих ранних паровых турбинах был не концентрированным, и большая часть его энергии рассеивалась во всех направлениях, что приводило к значительным потерям энергии.

Однако дальнейшее развитие парового двигателя требовало экономических условий, в которых разработчики двигателей могли бы воспользоваться их результатами. Таких условий не было ни в античную эпоху, ни в средневековье, ни в эпоху Возрождения. Только в конце 17-го столетия паровые двигатели были созданы как единичные курьёзы. Первая машина была создана испанским изобретателем Херонимо Аянсом де Бомонт, изобретения которого повлияли на патент Т. Севери (см. ниже). Принцип действия и применение паровых машин было описано также в 1655 году англичанином Эдвардом Сомерсетом. В 1663 году он опубликовал проект и установил приводимое в движение паром устройство для подъёма воды на стену Большой башни в замке Реглан (углубления в стене, где двигатель был установлен, были ещё заметны в 19-ом столетии). Однако никто не был готов рисковать деньгами для этой новой революционной концепции, и паровая машина осталась неразработанной. Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х в Париже он в сотрудничестве с голландским физиком Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нём. Видя неполноту вакуума, создаваемого при этом, Папен после приезда в Англию в 1680 году создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив. Система работала, как демонстрационная модель, но для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Поэтому Папен считается изобретателем парового котла, проложив таким образом путь к паровому двигателю Ньюкомена. Однако конструкцию действующей паровой машины он не предложил. Папен также проектировал лодку, приводимую в движение колесом с реактивной силой в комбинации концепций Таки ад-Дина и Севери; ему также приписывают изобретение множества важных устройств, например, предохранительного клапана.

Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на производстве паровым двигателем была «пожарная установка», сконструированная английским военным инженером Томасом Севери в 1698 году. На своё устройство Севери в 1698 году получил патент. Это был поршневой паровой насос, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации, так как вследствие высокого давления пара ёмкости и трубопроводы двигателя иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт изобретатель назвал его «другом рудокопа».

Затем английский кузнец Томас Ньюкомен в 1712 году продемонстрировал свой «атмосферный двигатель». Это был усовершенствованный паровой двигатель Севери, в котором Ньюкомен существенно снизил рабочее давление пара. Первым применением двигателя Ньюкомена была откачка воды из глубокой шахты. В шахтном насосе коромысло было связано с тягой, которая спускалась в шахту к камере насоса. Возвратно-поступательные движения тяги передавались поршню насоса, который подавал воду наверх. Именно двигатель Ньюкомена стал первым паровым двигателем, получившим широкое практическое применение, с которым принято связывать начало промышленной революции в Англии.

Первая в России двухцилиндровая вакуумная паровая машина была спроектирована механиком И. И. Ползуновым в 1763 году и построена в 1764 году для приведения в действие воздуходувных мехов на Барнаульских Колывано-Воскресенских заводах.

Дальнейшим повышением эффективности было применение пара высокого давления (американец Оливер Эванс и англичанин Ричард Тревитик). Тревитик успешно построил промышленные однотактовые двигатели высокого давления, известные как «корнуэльские двигатели». Они работали с давлением 50 фунтов на квадратный дюйм, или 345 кПа (3,405 атмосферы). Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования. Французский изобретатель Николас-Йозеф Куньо в 1769 году продемонстрировал первое действующее самоходное паровое транспортное средство: «fardier à vapeur» (паровую телегу). Возможно, его изобретение можно считать первым автомобилем. Самоходный паровой трактор оказался очень полезным в качестве мобильного источника механической энергии, приводившего в движение другие сельскохозяйственные машины: молотилки, прессы и др. В 1788 году пароход, построенный Джоном Фитчем, уже осуществлял регулярное сообщение по реке Делавер между Филадельфией (штат Пенсильвания) и Берлингтоном (штат Нью-Йорк). Он поднимал на борт 30 пассажиров и шёл со скоростью 7—8 узлов. 21 февраля 1804 года на металлургическом заводе Пенидаррен в Мертир-Тидвиле в Южном Уэльсе демонстрировался первый самоходный железнодорожный паровой локомотив, построенный Ричардом Тревитиком.

Паровые машины с возвратно-поступательным движением

Двигатели с возвратно-поступательным движением используют энергию пара для перемещения поршня в герметичной камере или цилиндре. Возвратно-поступательное действие поршня может быть механически преобразовано в линейное движение поршневых насосов или во вращательное движение для привода вращающихся частей станков или колёс транспортных средств.

Вакуумные машины

Гравюра двигателя Ньюкомена. Это изображение скопировано с рисунка в работе Дезаглирса «курс экспериментальной философии», 1744, которая является изменённой копией гравюры Генри Битона, датированной 1717 годом. Вероятно, изображён второй двигатель [хой]Ньюкомена, установленный приблизительно в 1714 в угольной шахте Гриф в Уоркшире.

Ранние паровые машины назывались вначале «огневыми машинами», а также «атмосферными» или «конденсирующими» двигателями Уатта. Они работали на вакуумном принципе и поэтому известны также как «вакуумные двигатели». Такие машины работали для привода поршневых насосов, во всяком случае, нет никаких свидетельств о том, что они использовались в иных целях. При работе паровой машины вакуумного типа в начале такта пар низкого давления впускается в рабочую камеру или цилиндр. Впускной клапан после этого закрывается, и пар охлаждается, конденсируясь. В двигателе Ньюкомена охлаждающая вода распыляется непосредственно в цилиндр, и конденсат сбегает в сборник конденсата. Таким образом создаётся вакуум в цилиндре. Атмосферное давление в верхней части цилиндра давит на поршень, и вызывает его перемещение вниз, то есть рабочий ход.

Поршень связан цепью с концом большого коромысла, вращающегося вокруг своей середины. Насос под нагрузкой связан цепью с противоположным концом коромысла, которое под действием насоса возвращает поршень к верхней части цилиндра силой гравитации. Так происходит обратный ход. Давление пара низкое и не может противодействовать движению поршня.[1]

Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным и неэффективным, тем не менее, эти паровые машины позволяли откачивать воду с большей глубины, чем это было возможно до их появления. В 1774 году появилась версия паровой машины, созданная Уаттом в сотрудничестве с Мэттью Боултоном, основным нововведением которой стало вынесение процесса конденсации в специальную отдельную камеру (конденсатор). Эта камера помещалась в ванну с холодной водой, и соединялась с цилиндром трубкой, перекрывающейся клапаном. К конденсационной камере была присоединена специальная небольшая вакуумная помпа (прообраз конденсатного насоса), приводимая в движение коромыслом и служащая для удаления конденсата из конденсатора. Образовавшаяся горячая вода подавалась специальным насосом (прообразом питательного насоса) обратно в котёл. Ещё одним радикальным нововведением стало закрытие верхнего конца рабочего цилиндра, в верхней части которого теперь находился пар низкого давления. Этот же пар присутствовал в двойной рубашке цилиндра, поддерживая его постоянную температуру. Во время движения поршня вверх этот пар по специальным трубкам передавался в нижнюю часть цилиндра, для того, чтобы подвергнуться конденсации во время следующего такта. Машина, по сути, перестала быть «атмосферной», и её мощность теперь зависела от разницы давлений между паром низкого давления и тем вакуумом, который удавалось получить.

версия паровой машины, созданная Уаттом

В паровой машине Ньюкомена смазка поршня осуществлялась небольшим количеством налитой на него сверху воды, в машине Уатта это стало невозможным, поскольку в верхней части цилиндра теперь находился пар, пришлось перейти на смазку смесью тавота и нефти. Такая же смазка использовалась в сальнике штока цилиндра.[1]

Вакуумные паровые машины, несмотря на очевидные ограничение их эффективности, были относительно безопасны, использовали пар низкого давления, что вполне соответствовало общему невысокому уровню котельных технологий XVIII века. Мощность машины ограничивалась низким давлением пара, размерами цилиндра, скоростью сгорания топлива и испарения воды в котле, а также размерами конденсатора. Максимальный теоретический КПД был ограничен относительно малой разницей температур по обе стороны поршня; это делало вакуумные машины, предназначенные для промышленного использования, слишком большими и дорогими.

Приблизительно в 1811 году Ричарду Тревитнику потребовалось усовершенствовать машину Уатта, для того чтобы приспособить её к новым котлам Корниша. Давление пара над поршнем достигло 275 кПа (2,8 атмосферы), и именно оно давало основную мощность для совершения рабочего хода; кроме того, был существенно усовершенствован конденсатор. Такие машины получили название машин Корниша, и строились вплоть до 1890-х годов. Множество старых машин Уатта было реконструировано до этого уровня. Некоторые машины Корниша имели весьма большой размер.

Паровые машины высокого давления

В паровых машинах пар поступает из котла в рабочую камеру цилиндра, где расширяется, оказывая давление на поршень и совершая полезную работу. После этого расширенный пар может выпускаться в атмосферу или поступать в конденсатор. Важное отличие машин высокого давления от вакуумных состоит в том, что давление отработанного пара превышает атмосферное или равно ему, то есть вакуум не создаётся. Отработанный пар обычно имел давление выше атмосферного и часто выбрасывался в дымовую трубу, что позволяло увеличить тягу котла.

Важность увеличения давления пара состоит в том, что при этом он приобретает более высокую температуру. Таким образом, паровая машина высокого давления работает при большей разнице температур чем та, которую можно достичь в вакуумных машинах. После того, как машины высокого давления заменили вакуумные, они стали основой для дальнейшего развития и совершенствования всех возвратно-поступательных паровых машин. Однако то давление, которое считалось в 1800 году высоким (275—345 кПа), сейчас рассматривается как очень низкое — давление в современных паровых котлах в десятки раз выше.

Дополнительное преимущество машин высокого давления состоит в том, что они намного меньше при заданном уровне мощности, и соответственно, существенно менее дорогие. Кроме того, такая паровая машина может быть достаточно лёгкой и компактной, чтобы использоваться на транспортных средствах. Возникший в результате паровой транспорт (паровозы, пароходы) революционизировал коммерческие и пассажирские перевозки, военную стратегию, и вообще затронул практически каждый аспект общественной жизни.

Паровые машины двойного действия

Следующим важным шагом в развитии паровых машин высокого давления стало появление машин двойного действия. В машинах одиночного действия поршень перемещался в одну сторону силой расширяющегося пара, но обратно он возвращался или под действием гравитации, или за счёт момента инерции вращающегося маховика, соединённого с паровой машиной.

В паровых машинах двойного действия свежий пар поочередно подается в обе стороны рабочего цилиндра, в то время как отработанный пар с другой стороны цилиндра выходит в атмосферу или в конденсатор. Это потребовало создания достаточно сложного механизма парораспределения. Принцип двойного действия повышает скорость работы машины и улучшает плавность хода.

Поршень такой паровой машины соединён со скользящим штоком, выходящим из цилиндра. К этому штоку крепится качающийся шатун, приводящий в движение кривошип маховика. Система парораспределения приводится в действие другим кривошипным механизмом. Механизм парораспределения может иметь функцию реверса для того, чтобы можно было менять направление вращения маховика машины.

Паровая машина двойного действия примерно вдвое мощнее обычной паровой машины, и кроме того, может работать с намного более лёгким маховиком. Это уменьшает вес и стоимость машин.

Большинство возвратно-поступательных паровых машин использует именно этот принцип работы, что хорошо видно на примере паровозов. Когда такая машина имеет два или более цилиндров, кривошипы устанавливаются со сдвигом в 90 градусов для того, чтобы гарантировать возможность запуска машины при любом положении поршней в цилиндрах. Некоторые колёсные пароходы имели одноцилиндровую паровую машину двойного действия, и на них приходилось следить, чтобы колесо не останавливалось в мёртвой точке, то есть в таком положении, при котором запуск машины невозможен.

В 1832 году впервые в России на заводе была построена паровая машина с кривошипно-шатунным механизмом для военного парохода «Геркулес». Это была первая в мире удачная для пароходов паровая машина без балансира в 240 сил.[2] Англичане дважды, в 1822 и 1826 годах, делали попытку изготовить такие машины для своих пароходов, но они оказались неудачными и их пришлось заменить обычными балансирнами машинами. Лишь на пароходе "Горгон" ("Gorgon"), спущенном на воду в 1837 году, они смогли установить машину прямого действия (без балансира), которая стала работать нормально.[3]

Парораспределение

Индикаторная диаграмма, показывающая четырёхфазный цикл поршневой паровой машины двойного действия

В большинстве возвратно-поступательных паровых машин пар изменяет направление движения в каждом такте рабочего цикла, поступая в цилиндр и выходя из него через один и тот же коллектор. Полный цикл двигателя занимает один полный оборот кривошипа и состоит из четырёх фаз — впуска, расширения (рабочая фаза), выпуска и сжатия. Эти фазы контролируются клапанами в «паровой коробке», смежной с цилиндром. Клапаны управляют потоком пара, последовательно соединяя коллекторы каждой стороны рабочего цилиндра с впускным и выпускным коллектором паровой машины. Клапаны приводятся в движение клапанным механизмом какого-либо типа. Простейший клапанный механизм даёт фиксированную продолжительность рабочих фаз и обычно не имеет возможности изменять направление вращения вала машины. Большинство клапанных механизмов более совершенны, имеют механизм реверса, а также позволяют регулировать мощность и крутящий момент машины путём изменения «отсечки пара», то есть изменяя соотношение фаз впуска и расширения. Так как обычно один и тот же скользящий клапан управляет и входным и выходным потоком пара, изменение этих фаз также симметрично влияет на соотношения фаз выпуска и сжатия. И здесь существует проблема, поскольку соотношение этих фаз в идеале не должно меняться: если фаза выпуска станет слишком короткой, то большая часть отработанного пара не успеет покинуть цилиндр, и создаст существенное противодавление на фазе сжатия. В 1840-х и 1850-х годах было совершено множество попыток обойти это ограничение, в основном путём создания схем с дополнительным клапаном отсечки, установленном на основном распределительном клапане, но такие механизмы не показывали удовлетворительной работы, к тому же получались слишком дорогими и сложными. С тех пор обычным компромиссным решением стало удлинение скользящих поверхностей золотниковых клапанов с тем, чтобы впускное окно было перекрыто дольше, чем выпускное. Позже были разработаны схемы с отдельными впускными и выпускными клапанами, которые могли обеспечить практически идеальный цикл работы, но эти схемы редко применялись на практике, особенно на транспорте, из-за своей сложности и возникающих эксплуатационных проблем.[4][5]

Сжатие

Выпускное окно цилиндра паровой машины перекрывается несколько раньше, чем поршень доходит до своего крайнего положения, что оставляет в цилиндре некоторое количество отработанного пара. Это означает, что в цикле работы присутствует фаза сжатия, формирующая так называемую «паровую подушку», замедляющую движение поршня в его крайних положениях. Кроме того, это устраняет резкий перепад давления в самом начале фазы впуска, когда в цилиндр поступает свежий пар.

Опережение

Описанный эффект «паровой подушки» усиливается также тем, что впуск свежего пара в цилиндр начинается несколько раньше, чем поршень достигнет крайнего положения, то есть присутствует некоторое опережение впуска. Это опережение необходимо для того, чтобы перед тем, как поршень начнёт свой рабочий ход под действием свежего пара, пар успел бы заполнить то мёртвоё пространство, которое возникло в результате предыдущей фазы, то есть каналы впуска-выпуска и неиспользуемый для движения поршня объём цилиндра.[6]

Простое расширение

Простое расширение предполагает, что пар работает только при расширении его в цилиндре, а отработанный пар выпускается напрямую в атмосферу или поступает в специальный конденсатор. Остаточное тепло пара при этом может быть использовано, например, для обогрева помещения или транспортного средства, а также для предварительного подогрева воды, поступающей в котёл.

Компаунд

В процессе расширения в цилиндре машины высокого давления температура пара падает пропорционально его расширению. Поскольку теплового обмена при этом не происходит (адиабатический процесс), получается, что пар поступает в цилиндр с большей температурой, чем выходит из него. Подобные перепады температуры в цилиндре приводят к снижению эффективности процесса.

Один из методов борьбы с этим перепадом температур был предложен в 1804 году английским инженером Артуром Вульфом, который запатентовал Компаундную паровую машину высокого давления Вульфа. В этой машине высокотемпературный пар из парового котла поступал в цилиндр высокого давления, а после этого отработанный в нём пар с более низкой температурой и давлением поступал в цилиндр (или цилиндры) низкого давления. Это уменьшало перепад температуры в каждом цилиндре, что в целом снижало температурные потери и улучшало общий коэффициент полезного действия паровой машины. Пар низкого давления имел больший объём, и поэтому требовал большего объёма цилиндра. Поэтому в компаудных машинах цилиндры низкого давления имели больший диаметр (а иногда и большую длину) чем цилиндры высокого давления.

Такая схема также известна под названием «двойное расширение», поскольку расширение пара происходит в две стадии. Иногда один цилиндр высокого давления был связан с двумя цилиндрами низкого давления, что давало три приблизительно одинаковых по размеру цилиндра. Такую схему было легче сбалансировать.

Двухцилиндровые компаундные машины могут быть классифицированы как:

  • Перекрёстный компаунд — Цилиндры расположены рядом, их паропроводящие каналы перекрещены.
  • Тандемный компаунд — Цилиндры располагаются последовательно, и используют один шток.
  • Угловой компаунд — Цилиндры расположены под углом друг к другу, обычно 90 градусов, и работают на один кривошип.

После 1880-х годов компаундные паровые машины получили широкое распространение на производстве и транспорте и стали практически единственным типом, используемым на пароходах. Использование их на паровозах не получило такого широкого распространения, поскольку они оказались слишком сложными, частично из-за того, что сложными были условия работы паровых машин на железнодорожном транспорте. Несмотря на то, что компаундные паровозы так и не стали массовым явлением (особенно в Великобритании, где они были очень мало распространены и вообще не использовались после 1930-х годов), они получили определённую популярность в нескольких странах.[7]

1907

Множественное расширение

Упрощённая схема паровой машины с тройным расширением.
Пар высокого давления (красный цвет) от котла проходит через машину, выходя в конденсатор при низком давлении (голубой цвет). 1890-е

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четырёхкратного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объём которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых турбинах используется тот же принцип разделения потока на секции высокого, среднего и низкого давления.

Прямоточные паровые машины

Прямоточная паровая машина

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остаётся более или менее постоянным. Прямоточные машины одиночного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одиночного, так и двойного действия.

Паровые турбины

Паровая турбина представляет собой барабан либо серию вращающихся дисков, закреплённых на единой оси, их называют ротором турбины, и серию чередующихся с ними неподвижных дисков, закреплённых на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные (в активных, либо подобные в реактивных) лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в неё подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии. Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).

Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания.

Основной сферой применения паровых турбин является выработка электроэнергии (около 86 % мирового производства электроэнергии производится паровыми турбинами), кроме того, они часто используются в качестве судовых двигателей (в том числе на атомных кораблях и подводных лодках). Было также построено некоторое количество паротурбовозов, но они не получили широкого распространения и были быстро вытеснены тепловозами и электровозами.

Другие типы паровых двигателей

Кроме поршневых паровых машин, в 19-м веке активно использовались роторные паровые машины. В России, во второй половине 19-го века они назывались «коловратные машины» (то есть «вращающие колесо» от слова «коло» — «колесо»). Их было несколько типов, но наиболее успешной и эффективной была «коловратная машина» петербургского инженера-механика Н. Н. Тверского. Паровой двигатель Н. Н. Тверского . Машина представляла собой цилиндрический корпус, в котором вращался ротор-крыльчатка, а запирали камеры расширения особые запорные барабанчики. «Коловратная машина» Н. Н. Тверского не имела ни одной детали, которая бы совершала возвратно-поступательные движения и была идеально уравновешена. Двигатель Тверского создавался и эксплуатировался преимущественно на энтузиазме его автора, однако он использовался во многих экземплярах на малых судах, на фабриках и для привода динамо-машин. Один из двигателей даже установили на императорской яхте «Штандарт», а в качестве расширительной машины — с приводом от баллона со сжатым газом аммиаком, этот двигатель приводил в движение в подводном положении одну из первых экспериментальных подводных лодок — «подводную миноноску», которая испытывалась Н. Н. Тверским в 80-х годах 19-го столетия в водах Финского залива. Однако со временем, когда паровые машины были вытеснены двигателями внутреннего сгорания и электромоторами, «коловратная машина» Н. Н. Тверского была практически забыта. Однако эти «коловратные машины» можно считать прообразами сегодняшних роторных двигателей внутреннего сгорания.

Применение

Паровые машины могут быть классифицированы по их применению следующим образом:

Стационарные машины

Паровой молот Паровая машина на старой сахарной фабрике, Куба

Стационарные паровые машины могут быть разделены на два типа по режиму использования:

  • Машины с переменным режимом, к которым относятся машины металлопрокатных станов, паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.
  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях, а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

Транспортные машины

Паровоз

Паровые машины использовались для привода различных типов транспортных средств, среди них:

  • Пароход
  • Сухопутные транспортные средства:
  • Паровой самолёт.

В России первый действующий паровоз был построен Е. А. и М. Е. Черепановыми на Нижне-Тагильском заводе в 1834 году для перевозки руды. Он развивал скорость 13 вёрст в час и перевозил более 200 пудов (3,2 тонны) груза. Длина первой железной дороги составляла 850 м.

Преимущества паровых машин

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах.

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга, которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930-х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса. При этом паровая машина паровоза продолжает развивать тяговое усилие даже в случае остановки колёс (упор в стену), чем отличается от всех других видов двигателей, используемых на транспорте.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла. КПД тепловой машины равен

,
где
Wout — механическая работа, Дж;
Qin — затраченное количество теплоты, Дж.

Тепловой двигатель не может иметь КПД больший, чем у цикла Карно, в котором количество теплоты передается от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура. Следовательно, для паровых двигателей необходимы максимально высокая температура T1 в начале цикла (достигаемая, например, с помощью пароперегрева) и как можно более низкая температура T2 в конце цикла (например, с помощью конденсатора):

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 — 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 — 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.

Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.

У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C.

Нетрадиционные машины

На 4-м канале Британского телевидения с 1998 года проводится реалити-шоу «Scrapheap Challenge» («Вызов со свалки»), в котором друг против друга выступают две команды из трёх постоянных участников и одного специалиста. Командам даётся 10 часов для постройки заданной машины из частей, которые они находят на свалке металлолома, а затем устраиваются гонки. В 2007 году команды британских и американских инженеров строили колёсный пароход в духе Брюнеля. При этом британская команда использовала для управления паровой машиной электрическую систему с микровыключателями и соленоидными клапанами. Их пароход набрал скорость, близкую к дизельной лодке американской команды.

См. также

История паровых машин

Россия
Великобритания

Примечания

  1. Hulse David K (1999): «The early development of the steam engine»; TEE Publishing, Leamington Spa, UK, ISBN, 85761 107 1 (англ.)
  2. Н. А. Залесский «„Одесса“ выходит в море / возникновение парового мореплавания на Чёрном море 1827—1855», Ленинград, «Судостроение», 1987 год, страница 8.
  3. Н. А. Залесский «„Одесса“ выходит в море / возникновение парового мореплавания на Чёрном море 1827—1855», Ленинград, «Судостроение», 1987 год, страницы 8 и 9.
  4. Riemsdijk, John van: (1994) Compound Locomotives, pp. 2-3; Atlantic Publishers Penrhyn, England. ISBN 0-906899-61-3 (англ.)
  5. Carpenter, George W. & contributors (2000): La locomotive à vapeur: pp. 56-72; 120 et seq; Camden Miniature Steam Services, UK. ISBN 0-9536523-0-0 (фр.)
  6. Bell A.M. Locomotives. — London: Virtue and Company. — P. pp61-63. (англ.)
  7. Riemsdijk, John van: (1994) Compound Locomotives, Atlantic Publishers Penrhyn, England. ISBN 0-906899-61-3  (англ.)

Литература

  • Паровые машины // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  • Паровые машины. История, описание и приложение их. 1838 г., СПб.: тип. Эдуарда Праца и Ко. — 234 с.
  • Брандт А. А. Очерк истории паровой машины и применения паровых двигателей в России, СПб., 1892.
  • Тонков Р. Р. К истории паровых машин в России. — «Горный журнал», № 6, 1902 г.
  • Лебедев В. И. Занимательная техника в прошлом. Ленинград: «Время», 1933 г. — 198 с.
  • Люди русской науки: Очерки о выдающихся деятелях естествознания и техники / Под ред. С. И. Вавилова. — М., Л.: Гос. изд-во техн.-теоретической лит-ры, 1948 г.
  • Конфедератов И. Я. Иван Иванович Ползунов. — М. — Л.: Госэнергоиздат, 1954 г. — 296 с.

Ссылки

Паровая машина - это... Что такое Паровая машина?

Парова́я маши́на — тепловой двигатель внешнего сгорания, преобразующий энергию пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу.

Горизонтальная стационарная двухцилиндровая паровая машина для привода заводских трансмиссий. Конец XIX в. Экспонат Музея Индустриальной Культуры. Нюрнберг

Значение паровых машин

Паровые машины использовались как приводной двигатель в насосных станциях, локомотивах, на паровых судах, тягачах, паровых автомобилях и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции XVIII века. Поздние паровые машины были вытеснены двигателями внутреннего сгорания, паровыми турбинами и электромоторами, КПД которых выше.

Паровые турбины, формально являющиеся разновидностью паровых машин, до сих пор широко используются в качестве приводов генераторов электроэнергии. Примерно 86 % электроэнергии, производимой в мире, вырабатывается с использованием паровых турбин.

Принцип действия

Для привода паровой машины необходим паровой котёл. Расширяющийся пар давит на поршень или на лопатки паровой турбины, движение которых передаётся другим механически. Одно из преимуществ двигателей внешнего сгорания в том, что из-за отделения котла от паровой машины можно использовать практически любой вид топлива — от кизяка до урана.

Изобретение и развитие

Первое известное устройство, приводимое в движение паром, было описано Героном Александрийским в первом столетии. Пар, выходящий по касательной из дюз, закреплённых на шаре, заставлял последний вращаться. Реальная паровая турбина была изобретена намного позже, в средневековом Египте, арабским философом, астрономом и инженером XVI века Таки ад-Дином Мухаммедом (англ.). Он предложил метод вращения вертела посредством потока пара, направляемого на лопасти, закреплённые по ободу колеса. Подобную машину предложил в 1629 году итальянский инженер Джованни Бранка для вращения цилиндрического анкерного устройства, которое поочерёдно поднимало и отпускало пару пестов в ступах. Паровой поток в этих ранних паровых турбинах был не концентрированным, и большая часть его энергии рассеивалась во всех направлениях, что приводило к значительным потерям энергии.

Однако дальнейшее развитие парового двигателя требовало экономических условий, в которых разработчики двигателей могли бы воспользоваться их результатами. Таких условий не было ни в античную эпоху, ни в средневековье, ни в эпоху Возрождения. Только в конце 17-го столетия паровые двигатели были созданы как единичные курьёзы. Первая машина была создана испанским изобретателем Херонимо Аянсом де Бомонт, изобретения которого повлияли на патент Т. Севери (см. ниже). Принцип действия и применение паровых машин было описано также в 1655 году англичанином Эдвардом Сомерсетом. В 1663 году он опубликовал проект и установил приводимое в движение паром устройство для подъёма воды на стену Большой башни в замке Реглан (углубления в стене, где двигатель был установлен, были ещё заметны в 19-ом столетии). Однако никто не был готов рисковать деньгами для этой новой революционной концепции, и паровая машина осталась неразработанной. Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х в Париже он в сотрудничестве с голландским физиком Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нём. Видя неполноту вакуума, создаваемого при этом, Папен после приезда в Англию в 1680 году создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив. Система работала, как демонстрационная модель, но для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Поэтому Папен считается изобретателем парового котла, проложив таким образом путь к паровому двигателю Ньюкомена. Однако конструкцию действующей паровой машины он не предложил. Папен также проектировал лодку, приводимую в движение колесом с реактивной силой в комбинации концепций Таки ад-Дина и Севери; ему также приписывают изобретение множества важных устройств, например, предохранительного клапана.

Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на производстве паровым двигателем была «пожарная установка», сконструированная английским военным инженером Томасом Севери в 1698 году. На своё устройство Севери в 1698 году получил патент. Это был поршневой паровой насос, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации, так как вследствие высокого давления пара ёмкости и трубопроводы двигателя иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт изобретатель назвал его «другом рудокопа».

Затем английский кузнец Томас Ньюкомен в 1712 году продемонстрировал свой «атмосферный двигатель». Это был усовершенствованный паровой двигатель Севери, в котором Ньюкомен существенно снизил рабочее давление пара. Первым применением двигателя Ньюкомена была откачка воды из глубокой шахты. В шахтном насосе коромысло было связано с тягой, которая спускалась в шахту к камере насоса. Возвратно-поступательные движения тяги передавались поршню насоса, который подавал воду наверх. Именно двигатель Ньюкомена стал первым паровым двигателем, получившим широкое практическое применение, с которым принято связывать начало промышленной революции в Англии.

Первая в России двухцилиндровая вакуумная паровая машина была спроектирована механиком И. И. Ползуновым в 1763 году и построена в 1764 году для приведения в действие воздуходувных мехов на Барнаульских Колывано-Воскресенских заводах.

Дальнейшим повышением эффективности было применение пара высокого давления (американец Оливер Эванс и англичанин Ричард Тревитик). Тревитик успешно построил промышленные однотактовые двигатели высокого давления, известные как «корнуэльские двигатели». Они работали с давлением 50 фунтов на квадратный дюйм, или 345 кПа (3,405 атмосферы). Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования. Французский изобретатель Николас-Йозеф Куньо в 1769 году продемонстрировал первое действующее самоходное паровое транспортное средство: «fardier à vapeur» (паровую телегу). Возможно, его изобретение можно считать первым автомобилем. Самоходный паровой трактор оказался очень полезным в качестве мобильного источника механической энергии, приводившего в движение другие сельскохозяйственные машины: молотилки, прессы и др. В 1788 году пароход, построенный Джоном Фитчем, уже осуществлял регулярное сообщение по реке Делавер между Филадельфией (штат Пенсильвания) и Берлингтоном (штат Нью-Йорк). Он поднимал на борт 30 пассажиров и шёл со скоростью 7—8 узлов. 21 февраля 1804 года на металлургическом заводе Пенидаррен в Мертир-Тидвиле в Южном Уэльсе демонстрировался первый самоходный железнодорожный паровой локомотив, построенный Ричардом Тревитиком.

Паровые машины с возвратно-поступательным движением

Двигатели с возвратно-поступательным движением используют энергию пара для перемещения поршня в герметичной камере или цилиндре. Возвратно-поступательное действие поршня может быть механически преобразовано в линейное движение поршневых насосов или во вращательное движение для привода вращающихся частей станков или колёс транспортных средств.

Вакуумные машины

Гравюра двигателя Ньюкомена. Это изображение скопировано с рисунка в работе Дезаглирса «курс экспериментальной философии», 1744, которая является изменённой копией гравюры Генри Битона, датированной 1717 годом. Вероятно, изображён второй двигатель [хой]Ньюкомена, установленный приблизительно в 1714 в угольной шахте Гриф в Уоркшире.

Ранние паровые машины назывались вначале «огневыми машинами», а также «атмосферными» или «конденсирующими» двигателями Уатта. Они работали на вакуумном принципе и поэтому известны также как «вакуумные двигатели». Такие машины работали для привода поршневых насосов, во всяком случае, нет никаких свидетельств о том, что они использовались в иных целях. При работе паровой машины вакуумного типа в начале такта пар низкого давления впускается в рабочую камеру или цилиндр. Впускной клапан после этого закрывается, и пар охлаждается, конденсируясь. В двигателе Ньюкомена охлаждающая вода распыляется непосредственно в цилиндр, и конденсат сбегает в сборник конденсата. Таким образом создаётся вакуум в цилиндре. Атмосферное давление в верхней части цилиндра давит на поршень, и вызывает его перемещение вниз, то есть рабочий ход.

Поршень связан цепью с концом большого коромысла, вращающегося вокруг своей середины. Насос под нагрузкой связан цепью с противоположным концом коромысла, которое под действием насоса возвращает поршень к верхней части цилиндра силой гравитации. Так происходит обратный ход. Давление пара низкое и не может противодействовать движению поршня.[1]

Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным и неэффективным, тем не менее, эти паровые машины позволяли откачивать воду с большей глубины, чем это было возможно до их появления. В 1774 году появилась версия паровой машины, созданная Уаттом в сотрудничестве с Мэттью Боултоном, основным нововведением которой стало вынесение процесса конденсации в специальную отдельную камеру (конденсатор). Эта камера помещалась в ванну с холодной водой, и соединялась с цилиндром трубкой, перекрывающейся клапаном. К конденсационной камере была присоединена специальная небольшая вакуумная помпа (прообраз конденсатного насоса), приводимая в движение коромыслом и служащая для удаления конденсата из конденсатора. Образовавшаяся горячая вода подавалась специальным насосом (прообразом питательного насоса) обратно в котёл. Ещё одним радикальным нововведением стало закрытие верхнего конца рабочего цилиндра, в верхней части которого теперь находился пар низкого давления. Этот же пар присутствовал в двойной рубашке цилиндра, поддерживая его постоянную температуру. Во время движения поршня вверх этот пар по специальным трубкам передавался в нижнюю часть цилиндра, для того, чтобы подвергнуться конденсации во время следующего такта. Машина, по сути, перестала быть «атмосферной», и её мощность теперь зависела от разницы давлений между паром низкого давления и тем вакуумом, который удавалось получить.

версия паровой машины, созданная Уаттом

В паровой машине Ньюкомена смазка поршня осуществлялась небольшим количеством налитой на него сверху воды, в машине Уатта это стало невозможным, поскольку в верхней части цилиндра теперь находился пар, пришлось перейти на смазку смесью тавота и нефти. Такая же смазка использовалась в сальнике штока цилиндра.[1]

Вакуумные паровые машины, несмотря на очевидные ограничение их эффективности, были относительно безопасны, использовали пар низкого давления, что вполне соответствовало общему невысокому уровню котельных технологий XVIII века. Мощность машины ограничивалась низким давлением пара, размерами цилиндра, скоростью сгорания топлива и испарения воды в котле, а также размерами конденсатора. Максимальный теоретический КПД был ограничен относительно малой разницей температур по обе стороны поршня; это делало вакуумные машины, предназначенные для промышленного использования, слишком большими и дорогими.

Приблизительно в 1811 году Ричарду Тревитнику потребовалось усовершенствовать машину Уатта, для того чтобы приспособить её к новым котлам Корниша. Давление пара над поршнем достигло 275 кПа (2,8 атмосферы), и именно оно давало основную мощность для совершения рабочего хода; кроме того, был существенно усовершенствован конденсатор. Такие машины получили название машин Корниша, и строились вплоть до 1890-х годов. Множество старых машин Уатта было реконструировано до этого уровня. Некоторые машины Корниша имели весьма большой размер.

Паровые машины высокого давления

В паровых машинах пар поступает из котла в рабочую камеру цилиндра, где расширяется, оказывая давление на поршень и совершая полезную работу. После этого расширенный пар может выпускаться в атмосферу или поступать в конденсатор. Важное отличие машин высокого давления от вакуумных состоит в том, что давление отработанного пара превышает атмосферное или равно ему, то есть вакуум не создаётся. Отработанный пар обычно имел давление выше атмосферного и часто выбрасывался в дымовую трубу, что позволяло увеличить тягу котла.

Важность увеличения давления пара состоит в том, что при этом он приобретает более высокую температуру. Таким образом, паровая машина высокого давления работает при большей разнице температур чем та, которую можно достичь в вакуумных машинах. После того, как машины высокого давления заменили вакуумные, они стали основой для дальнейшего развития и совершенствования всех возвратно-поступательных паровых машин. Однако то давление, которое считалось в 1800 году высоким (275—345 кПа), сейчас рассматривается как очень низкое — давление в современных паровых котлах в десятки раз выше.

Дополнительное преимущество машин высокого давления состоит в том, что они намного меньше при заданном уровне мощности, и соответственно, существенно менее дорогие. Кроме того, такая паровая машина может быть достаточно лёгкой и компактной, чтобы использоваться на транспортных средствах. Возникший в результате паровой транспорт (паровозы, пароходы) революционизировал коммерческие и пассажирские перевозки, военную стратегию, и вообще затронул практически каждый аспект общественной жизни.

Паровые машины двойного действия

Следующим важным шагом в развитии паровых машин высокого давления стало появление машин двойного действия. В машинах одиночного действия поршень перемещался в одну сторону силой расширяющегося пара, но обратно он возвращался или под действием гравитации, или за счёт момента инерции вращающегося маховика, соединённого с паровой машиной.

В паровых машинах двойного действия свежий пар поочередно подается в обе стороны рабочего цилиндра, в то время как отработанный пар с другой стороны цилиндра выходит в атмосферу или в конденсатор. Это потребовало создания достаточно сложного механизма парораспределения. Принцип двойного действия повышает скорость работы машины и улучшает плавность хода.

Поршень такой паровой машины соединён со скользящим штоком, выходящим из цилиндра. К этому штоку крепится качающийся шатун, приводящий в движение кривошип маховика. Система парораспределения приводится в действие другим кривошипным механизмом. Механизм парораспределения может иметь функцию реверса для того, чтобы можно было менять направление вращения маховика машины.

Паровая машина двойного действия примерно вдвое мощнее обычной паровой машины, и кроме того, может работать с намного более лёгким маховиком. Это уменьшает вес и стоимость машин.

Большинство возвратно-поступательных паровых машин использует именно этот принцип работы, что хорошо видно на примере паровозов. Когда такая машина имеет два или более цилиндров, кривошипы устанавливаются со сдвигом в 90 градусов для того, чтобы гарантировать возможность запуска машины при любом положении поршней в цилиндрах. Некоторые колёсные пароходы имели одноцилиндровую паровую машину двойного действия, и на них приходилось следить, чтобы колесо не останавливалось в мёртвой точке, то есть в таком положении, при котором запуск машины невозможен.

В 1832 году впервые в России на заводе была построена паровая машина с кривошипно-шатунным механизмом для военного парохода «Геркулес». Это была первая в мире удачная для пароходов паровая машина без балансира в 240 сил.[2] Англичане дважды, в 1822 и 1826 годах, делали попытку изготовить такие машины для своих пароходов, но они оказались неудачными и их пришлось заменить обычными балансирнами машинами. Лишь на пароходе "Горгон" ("Gorgon"), спущенном на воду в 1837 году, они смогли установить машину прямого действия (без балансира), которая стала работать нормально.[3]

Парораспределение

Индикаторная диаграмма, показывающая четырёхфазный цикл поршневой паровой машины двойного действия

В большинстве возвратно-поступательных паровых машин пар изменяет направление движения в каждом такте рабочего цикла, поступая в цилиндр и выходя из него через один и тот же коллектор. Полный цикл двигателя занимает один полный оборот кривошипа и состоит из четырёх фаз — впуска, расширения (рабочая фаза), выпуска и сжатия. Эти фазы контролируются клапанами в «паровой коробке», смежной с цилиндром. Клапаны управляют потоком пара, последовательно соединяя коллекторы каждой стороны рабочего цилиндра с впускным и выпускным коллектором паровой машины. Клапаны приводятся в движение клапанным механизмом какого-либо типа. Простейший клапанный механизм даёт фиксированную продолжительность рабочих фаз и обычно не имеет возможности изменять направление вращения вала машины. Большинство клапанных механизмов более совершенны, имеют механизм реверса, а также позволяют регулировать мощность и крутящий момент машины путём изменения «отсечки пара», то есть изменяя соотношение фаз впуска и расширения. Так как обычно один и тот же скользящий клапан управляет и входным и выходным потоком пара, изменение этих фаз также симметрично влияет на соотношения фаз выпуска и сжатия. И здесь существует проблема, поскольку соотношение этих фаз в идеале не должно меняться: если фаза выпуска станет слишком короткой, то большая часть отработанного пара не успеет покинуть цилиндр, и создаст существенное противодавление на фазе сжатия. В 1840-х и 1850-х годах было совершено множество попыток обойти это ограничение, в основном путём создания схем с дополнительным клапаном отсечки, установленном на основном распределительном клапане, но такие механизмы не показывали удовлетворительной работы, к тому же получались слишком дорогими и сложными. С тех пор обычным компромиссным решением стало удлинение скользящих поверхностей золотниковых клапанов с тем, чтобы впускное окно было перекрыто дольше, чем выпускное. Позже были разработаны схемы с отдельными впускными и выпускными клапанами, которые могли обеспечить практически идеальный цикл работы, но эти схемы редко применялись на практике, особенно на транспорте, из-за своей сложности и возникающих эксплуатационных проблем.[4][5]

Сжатие

Выпускное окно цилиндра паровой машины перекрывается несколько раньше, чем поршень доходит до своего крайнего положения, что оставляет в цилиндре некоторое количество отработанного пара. Это означает, что в цикле работы присутствует фаза сжатия, формирующая так называемую «паровую подушку», замедляющую движение поршня в его крайних положениях. Кроме того, это устраняет резкий перепад давления в самом начале фазы впуска, когда в цилиндр поступает свежий пар.

Опережение

Описанный эффект «паровой подушки» усиливается также тем, что впуск свежего пара в цилиндр начинается несколько раньше, чем поршень достигнет крайнего положения, то есть присутствует некоторое опережение впуска. Это опережение необходимо для того, чтобы перед тем, как поршень начнёт свой рабочий ход под действием свежего пара, пар успел бы заполнить то мёртвоё пространство, которое возникло в результате предыдущей фазы, то есть каналы впуска-выпуска и неиспользуемый для движения поршня объём цилиндра.[6]

Простое расширение

Простое расширение предполагает, что пар работает только при расширении его в цилиндре, а отработанный пар выпускается напрямую в атмосферу или поступает в специальный конденсатор. Остаточное тепло пара при этом может быть использовано, например, для обогрева помещения или транспортного средства, а также для предварительного подогрева воды, поступающей в котёл.

Компаунд

В процессе расширения в цилиндре машины высокого давления температура пара падает пропорционально его расширению. Поскольку теплового обмена при этом не происходит (адиабатический процесс), получается, что пар поступает в цилиндр с большей температурой, чем выходит из него. Подобные перепады температуры в цилиндре приводят к снижению эффективности процесса.

Один из методов борьбы с этим перепадом температур был предложен в 1804 году английским инженером Артуром Вульфом, который запатентовал Компаундную паровую машину высокого давления Вульфа. В этой машине высокотемпературный пар из парового котла поступал в цилиндр высокого давления, а после этого отработанный в нём пар с более низкой температурой и давлением поступал в цилиндр (или цилиндры) низкого давления. Это уменьшало перепад температуры в каждом цилиндре, что в целом снижало температурные потери и улучшало общий коэффициент полезного действия паровой машины. Пар низкого давления имел больший объём, и поэтому требовал большего объёма цилиндра. Поэтому в компаудных машинах цилиндры низкого давления имели больший диаметр (а иногда и большую длину) чем цилиндры высокого давления.

Такая схема также известна под названием «двойное расширение», поскольку расширение пара происходит в две стадии. Иногда один цилиндр высокого давления был связан с двумя цилиндрами низкого давления, что давало три приблизительно одинаковых по размеру цилиндра. Такую схему было легче сбалансировать.

Двухцилиндровые компаундные машины могут быть классифицированы как:

  • Перекрёстный компаунд — Цилиндры расположены рядом, их паропроводящие каналы перекрещены.
  • Тандемный компаунд — Цилиндры располагаются последовательно, и используют один шток.
  • Угловой компаунд — Цилиндры расположены под углом друг к другу, обычно 90 градусов, и работают на один кривошип.

После 1880-х годов компаундные паровые машины получили широкое распространение на производстве и транспорте и стали практически единственным типом, используемым на пароходах. Использование их на паровозах не получило такого широкого распространения, поскольку они оказались слишком сложными, частично из-за того, что сложными были условия работы паровых машин на железнодорожном транспорте. Несмотря на то, что компаундные паровозы так и не стали массовым явлением (особенно в Великобритании, где они были очень мало распространены и вообще не использовались после 1930-х годов), они получили определённую популярность в нескольких странах.[7]

1907

Множественное расширение

Упрощённая схема паровой машины с тройным расширением.
Пар высокого давления (красный цвет) от котла проходит через машину, выходя в конденсатор при низком давлении (голубой цвет). 1890-е

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четырёхкратного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объём которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых турбинах используется тот же принцип разделения потока на секции высокого, среднего и низкого давления.

Прямоточные паровые машины

Прямоточная паровая машина

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остаётся более или менее постоянным. Прямоточные машины одиночного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одиночного, так и двойного действия.

Паровые турбины

Паровая турбина представляет собой барабан либо серию вращающихся дисков, закреплённых на единой оси, их называют ротором турбины, и серию чередующихся с ними неподвижных дисков, закреплённых на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные (в активных, либо подобные в реактивных) лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в неё подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии. Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).

Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания.

Основной сферой применения паровых турбин является выработка электроэнергии (около 86 % мирового производства электроэнергии производится паровыми турбинами), кроме того, они часто используются в качестве судовых двигателей (в том числе на атомных кораблях и подводных лодках). Было также построено некоторое количество паротурбовозов, но они не получили широкого распространения и были быстро вытеснены тепловозами и электровозами.

Другие типы паровых двигателей

Кроме поршневых паровых машин, в 19-м веке активно использовались роторные паровые машины. В России, во второй половине 19-го века они назывались «коловратные машины» (то есть «вращающие колесо» от слова «коло» — «колесо»). Их было несколько типов, но наиболее успешной и эффективной была «коловратная машина» петербургского инженера-механика Н. Н. Тверского. Паровой двигатель Н. Н. Тверского . Машина представляла собой цилиндрический корпус, в котором вращался ротор-крыльчатка, а запирали камеры расширения особые запорные барабанчики. «Коловратная машина» Н. Н. Тверского не имела ни одной детали, которая бы совершала возвратно-поступательные движения и была идеально уравновешена. Двигатель Тверского создавался и эксплуатировался преимущественно на энтузиазме его автора, однако он использовался во многих экземплярах на малых судах, на фабриках и для привода динамо-машин. Один из двигателей даже установили на императорской яхте «Штандарт», а в качестве расширительной машины — с приводом от баллона со сжатым газом аммиаком, этот двигатель приводил в движение в подводном положении одну из первых экспериментальных подводных лодок — «подводную миноноску», которая испытывалась Н. Н. Тверским в 80-х годах 19-го столетия в водах Финского залива. Однако со временем, когда паровые машины были вытеснены двигателями внутреннего сгорания и электромоторами, «коловратная машина» Н. Н. Тверского была практически забыта. Однако эти «коловратные машины» можно считать прообразами сегодняшних роторных двигателей внутреннего сгорания.

Применение

Паровые машины могут быть классифицированы по их применению следующим образом:

Стационарные машины

Паровой молот Паровая машина на старой сахарной фабрике, Куба

Стационарные паровые машины могут быть разделены на два типа по режиму использования:

  • Машины с переменным режимом, к которым относятся машины металлопрокатных станов, паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.
  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях, а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

Транспортные машины

Паровоз

Паровые машины использовались для привода различных типов транспортных средств, среди них:

  • Пароход
  • Сухопутные транспортные средства:
  • Паровой самолёт.

В России первый действующий паровоз был построен Е. А. и М. Е. Черепановыми на Нижне-Тагильском заводе в 1834 году для перевозки руды. Он развивал скорость 13 вёрст в час и перевозил более 200 пудов (3,2 тонны) груза. Длина первой железной дороги составляла 850 м.

Преимущества паровых машин

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах.

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга, которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930-х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса. При этом паровая машина паровоза продолжает развивать тяговое усилие даже в случае остановки колёс (упор в стену), чем отличается от всех других видов двигателей, используемых на транспорте.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла. КПД тепловой машины равен

,
где
Wout — механическая работа, Дж;
Qin — затраченное количество теплоты, Дж.

Тепловой двигатель не может иметь КПД больший, чем у цикла Карно, в котором количество теплоты передается от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура. Следовательно, для паровых двигателей необходимы максимально высокая температура T1 в начале цикла (достигаемая, например, с помощью пароперегрева) и как можно более низкая температура T2 в конце цикла (например, с помощью конденсатора):

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 — 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 — 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.

Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.

У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C.

Нетрадиционные машины

На 4-м канале Британского телевидения с 1998 года проводится реалити-шоу «Scrapheap Challenge» («Вызов со свалки»), в котором друг против друга выступают две команды из трёх постоянных участников и одного специалиста. Командам даётся 10 часов для постройки заданной машины из частей, которые они находят на свалке металлолома, а затем устраиваются гонки. В 2007 году команды британских и американских инженеров строили колёсный пароход в духе Брюнеля. При этом британская команда использовала для управления паровой машиной электрическую систему с микровыключателями и соленоидными клапанами. Их пароход набрал скорость, близкую к дизельной лодке американской команды.

См. также

История паровых машин

Россия
Великобритания

Примечания

  1. Hulse David K (1999): «The early development of the steam engine»; TEE Publishing, Leamington Spa, UK, ISBN, 85761 107 1 (англ.)
  2. Н. А. Залесский «„Одесса“ выходит в море / возникновение парового мореплавания на Чёрном море 1827—1855», Ленинград, «Судостроение», 1987 год, страница 8.
  3. Н. А. Залесский «„Одесса“ выходит в море / возникновение парового мореплавания на Чёрном море 1827—1855», Ленинград, «Судостроение», 1987 год, страницы 8 и 9.
  4. Riemsdijk, John van: (1994) Compound Locomotives, pp. 2-3; Atlantic Publishers Penrhyn, England. ISBN 0-906899-61-3 (англ.)
  5. Carpenter, George W. & contributors (2000): La locomotive à vapeur: pp. 56-72; 120 et seq; Camden Miniature Steam Services, UK. ISBN 0-9536523-0-0 (фр.)
  6. Bell A.M. Locomotives. — London: Virtue and Company. — P. pp61-63. (англ.)
  7. Riemsdijk, John van: (1994) Compound Locomotives, Atlantic Publishers Penrhyn, England. ISBN 0-906899-61-3  (англ.)

Литература

  • Паровые машины // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  • Паровые машины. История, описание и приложение их. 1838 г., СПб.: тип. Эдуарда Праца и Ко. — 234 с.
  • Брандт А. А. Очерк истории паровой машины и применения паровых двигателей в России, СПб., 1892.
  • Тонков Р. Р. К истории паровых машин в России. — «Горный журнал», № 6, 1902 г.
  • Лебедев В. И. Занимательная техника в прошлом. Ленинград: «Время», 1933 г. — 198 с.
  • Люди русской науки: Очерки о выдающихся деятелях естествознания и техники / Под ред. С. И. Вавилова. — М., Л.: Гос. изд-во техн.-теоретической лит-ры, 1948 г.
  • Конфедератов И. Я. Иван Иванович Ползунов. — М. — Л.: Госэнергоиздат, 1954 г. — 296 с.

Ссылки

Паровая машина - это... Что такое Паровая машина?

Парова́я маши́на — тепловой двигатель внешнего сгорания, преобразующий энергию пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу.

Горизонтальная стационарная двухцилиндровая паровая машина для привода заводских трансмиссий. Конец XIX в. Экспонат Музея Индустриальной Культуры. Нюрнберг

Значение паровых машин

Паровые машины использовались как приводной двигатель в насосных станциях, локомотивах, на паровых судах, тягачах, паровых автомобилях и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции XVIII века. Поздние паровые машины были вытеснены двигателями внутреннего сгорания, паровыми турбинами и электромоторами, КПД которых выше.

Паровые турбины, формально являющиеся разновидностью паровых машин, до сих пор широко используются в качестве приводов генераторов электроэнергии. Примерно 86 % электроэнергии, производимой в мире, вырабатывается с использованием паровых турбин.

Принцип действия

Для привода паровой машины необходим паровой котёл. Расширяющийся пар давит на поршень или на лопатки паровой турбины, движение которых передаётся другим механически. Одно из преимуществ двигателей внешнего сгорания в том, что из-за отделения котла от паровой машины можно использовать практически любой вид топлива — от кизяка до урана.

Изобретение и развитие

Первое известное устройство, приводимое в движение паром, было описано Героном Александрийским в первом столетии. Пар, выходящий по касательной из дюз, закреплённых на шаре, заставлял последний вращаться. Реальная паровая турбина была изобретена намного позже, в средневековом Египте, арабским философом, астрономом и инженером XVI века Таки ад-Дином Мухаммедом (англ.). Он предложил метод вращения вертела посредством потока пара, направляемого на лопасти, закреплённые по ободу колеса. Подобную машину предложил в 1629 году итальянский инженер Джованни Бранка для вращения цилиндрического анкерного устройства, которое поочерёдно поднимало и отпускало пару пестов в ступах. Паровой поток в этих ранних паровых турбинах был не концентрированным, и большая часть его энергии рассеивалась во всех направлениях, что приводило к значительным потерям энергии.

Однако дальнейшее развитие парового двигателя требовало экономических условий, в которых разработчики двигателей могли бы воспользоваться их результатами. Таких условий не было ни в античную эпоху, ни в средневековье, ни в эпоху Возрождения. Только в конце 17-го столетия паровые двигатели были созданы как единичные курьёзы. Первая машина была создана испанским изобретателем Херонимо Аянсом де Бомонт, изобретения которого повлияли на патент Т. Севери (см. ниже). Принцип действия и применение паровых машин было описано также в 1655 году англичанином Эдвардом Сомерсетом. В 1663 году он опубликовал проект и установил приводимое в движение паром устройство для подъёма воды на стену Большой башни в замке Реглан (углубления в стене, где двигатель был установлен, были ещё заметны в 19-ом столетии). Однако никто не был готов рисковать деньгами для этой новой революционной концепции, и паровая машина осталась неразработанной. Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х в Париже он в сотрудничестве с голландским физиком Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нём. Видя неполноту вакуума, создаваемого при этом, Папен после приезда в Англию в 1680 году создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив. Система работала, как демонстрационная модель, но для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Поэтому Папен считается изобретателем парового котла, проложив таким образом путь к паровому двигателю Ньюкомена. Однако конструкцию действующей паровой машины он не предложил. Папен также проектировал лодку, приводимую в движение колесом с реактивной силой в комбинации концепций Таки ад-Дина и Севери; ему также приписывают изобретение множества важных устройств, например, предохранительного клапана.

Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на производстве паровым двигателем была «пожарная установка», сконструированная английским военным инженером Томасом Севери в 1698 году. На своё устройство Севери в 1698 году получил патент. Это был поршневой паровой насос, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации, так как вследствие высокого давления пара ёмкости и трубопроводы двигателя иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт изобретатель назвал его «другом рудокопа».

Затем английский кузнец Томас Ньюкомен в 1712 году продемонстрировал свой «атмосферный двигатель». Это был усовершенствованный паровой двигатель Севери, в котором Ньюкомен существенно снизил рабочее давление пара. Первым применением двигателя Ньюкомена была откачка воды из глубокой шахты. В шахтном насосе коромысло было связано с тягой, которая спускалась в шахту к камере насоса. Возвратно-поступательные движения тяги передавались поршню насоса, который подавал воду наверх. Именно двигатель Ньюкомена стал первым паровым двигателем, получившим широкое практическое применение, с которым принято связывать начало промышленной революции в Англии.

Первая в России двухцилиндровая вакуумная паровая машина была спроектирована механиком И. И. Ползуновым в 1763 году и построена в 1764 году для приведения в действие воздуходувных мехов на Барнаульских Колывано-Воскресенских заводах.

Дальнейшим повышением эффективности было применение пара высокого давления (американец Оливер Эванс и англичанин Ричард Тревитик). Тревитик успешно построил промышленные однотактовые двигатели высокого давления, известные как «корнуэльские двигатели». Они работали с давлением 50 фунтов на квадратный дюйм, или 345 кПа (3,405 атмосферы). Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования. Французский изобретатель Николас-Йозеф Куньо в 1769 году продемонстрировал первое действующее самоходное паровое транспортное средство: «fardier à vapeur» (паровую телегу). Возможно, его изобретение можно считать первым автомобилем. Самоходный паровой трактор оказался очень полезным в качестве мобильного источника механической энергии, приводившего в движение другие сельскохозяйственные машины: молотилки, прессы и др. В 1788 году пароход, построенный Джоном Фитчем, уже осуществлял регулярное сообщение по реке Делавер между Филадельфией (штат Пенсильвания) и Берлингтоном (штат Нью-Йорк). Он поднимал на борт 30 пассажиров и шёл со скоростью 7—8 узлов. 21 февраля 1804 года на металлургическом заводе Пенидаррен в Мертир-Тидвиле в Южном Уэльсе демонстрировался первый самоходный железнодорожный паровой локомотив, построенный Ричардом Тревитиком.

Паровые машины с возвратно-поступательным движением

Двигатели с возвратно-поступательным движением используют энергию пара для перемещения поршня в герметичной камере или цилиндре. Возвратно-поступательное действие поршня может быть механически преобразовано в линейное движение поршневых насосов или во вращательное движение для привода вращающихся частей станков или колёс транспортных средств.

Вакуумные машины

Гравюра двигателя Ньюкомена. Это изображение скопировано с рисунка в работе Дезаглирса «курс экспериментальной философии», 1744, которая является изменённой копией гравюры Генри Битона, датированной 1717 годом. Вероятно, изображён второй двигатель [хой]Ньюкомена, установленный приблизительно в 1714 в угольной шахте Гриф в Уоркшире.

Ранние паровые машины назывались вначале «огневыми машинами», а также «атмосферными» или «конденсирующими» двигателями Уатта. Они работали на вакуумном принципе и поэтому известны также как «вакуумные двигатели». Такие машины работали для привода поршневых насосов, во всяком случае, нет никаких свидетельств о том, что они использовались в иных целях. При работе паровой машины вакуумного типа в начале такта пар низкого давления впускается в рабочую камеру или цилиндр. Впускной клапан после этого закрывается, и пар охлаждается, конденсируясь. В двигателе Ньюкомена охлаждающая вода распыляется непосредственно в цилиндр, и конденсат сбегает в сборник конденсата. Таким образом создаётся вакуум в цилиндре. Атмосферное давление в верхней части цилиндра давит на поршень, и вызывает его перемещение вниз, то есть рабочий ход.

Поршень связан цепью с концом большого коромысла, вращающегося вокруг своей середины. Насос под нагрузкой связан цепью с противоположным концом коромысла, которое под действием насоса возвращает поршень к верхней части цилиндра силой гравитации. Так происходит обратный ход. Давление пара низкое и не может противодействовать движению поршня.[1]

Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным и неэффективным, тем не менее, эти паровые машины позволяли откачивать воду с большей глубины, чем это было возможно до их появления. В 1774 году появилась версия паровой машины, созданная Уаттом в сотрудничестве с Мэттью Боултоном, основным нововведением которой стало вынесение процесса конденсации в специальную отдельную камеру (конденсатор). Эта камера помещалась в ванну с холодной водой, и соединялась с цилиндром трубкой, перекрывающейся клапаном. К конденсационной камере была присоединена специальная небольшая вакуумная помпа (прообраз конденсатного насоса), приводимая в движение коромыслом и служащая для удаления конденсата из конденсатора. Образовавшаяся горячая вода подавалась специальным насосом (прообразом питательного насоса) обратно в котёл. Ещё одним радикальным нововведением стало закрытие верхнего конца рабочего цилиндра, в верхней части которого теперь находился пар низкого давления. Этот же пар присутствовал в двойной рубашке цилиндра, поддерживая его постоянную температуру. Во время движения поршня вверх этот пар по специальным трубкам передавался в нижнюю часть цилиндра, для того, чтобы подвергнуться конденсации во время следующего такта. Машина, по сути, перестала быть «атмосферной», и её мощность теперь зависела от разницы давлений между паром низкого давления и тем вакуумом, который удавалось получить.

версия паровой машины, созданная Уаттом

В паровой машине Ньюкомена смазка поршня осуществлялась небольшим количеством налитой на него сверху воды, в машине Уатта это стало невозможным, поскольку в верхней части цилиндра теперь находился пар, пришлось перейти на смазку смесью тавота и нефти. Такая же смазка использовалась в сальнике штока цилиндра.[1]

Вакуумные паровые машины, несмотря на очевидные ограничение их эффективности, были относительно безопасны, использовали пар низкого давления, что вполне соответствовало общему невысокому уровню котельных технологий XVIII века. Мощность машины ограничивалась низким давлением пара, размерами цилиндра, скоростью сгорания топлива и испарения воды в котле, а также размерами конденсатора. Максимальный теоретический КПД был ограничен относительно малой разницей температур по обе стороны поршня; это делало вакуумные машины, предназначенные для промышленного использования, слишком большими и дорогими.

Приблизительно в 1811 году Ричарду Тревитнику потребовалось усовершенствовать машину Уатта, для того чтобы приспособить её к новым котлам Корниша. Давление пара над поршнем достигло 275 кПа (2,8 атмосферы), и именно оно давало основную мощность для совершения рабочего хода; кроме того, был существенно усовершенствован конденсатор. Такие машины получили название машин Корниша, и строились вплоть до 1890-х годов. Множество старых машин Уатта было реконструировано до этого уровня. Некоторые машины Корниша имели весьма большой размер.

Паровые машины высокого давления

В паровых машинах пар поступает из котла в рабочую камеру цилиндра, где расширяется, оказывая давление на поршень и совершая полезную работу. После этого расширенный пар может выпускаться в атмосферу или поступать в конденсатор. Важное отличие машин высокого давления от вакуумных состоит в том, что давление отработанного пара превышает атмосферное или равно ему, то есть вакуум не создаётся. Отработанный пар обычно имел давление выше атмосферного и часто выбрасывался в дымовую трубу, что позволяло увеличить тягу котла.

Важность увеличения давления пара состоит в том, что при этом он приобретает более высокую температуру. Таким образом, паровая машина высокого давления работает при большей разнице температур чем та, которую можно достичь в вакуумных машинах. После того, как машины высокого давления заменили вакуумные, они стали основой для дальнейшего развития и совершенствования всех возвратно-поступательных паровых машин. Однако то давление, которое считалось в 1800 году высоким (275—345 кПа), сейчас рассматривается как очень низкое — давление в современных паровых котлах в десятки раз выше.

Дополнительное преимущество машин высокого давления состоит в том, что они намного меньше при заданном уровне мощности, и соответственно, существенно менее дорогие. Кроме того, такая паровая машина может быть достаточно лёгкой и компактной, чтобы использоваться на транспортных средствах. Возникший в результате паровой транспорт (паровозы, пароходы) революционизировал коммерческие и пассажирские перевозки, военную стратегию, и вообще затронул практически каждый аспект общественной жизни.

Паровые машины двойного действия

Следующим важным шагом в развитии паровых машин высокого давления стало появление машин двойного действия. В машинах одиночного действия поршень перемещался в одну сторону силой расширяющегося пара, но обратно он возвращался или под действием гравитации, или за счёт момента инерции вращающегося маховика, соединённого с паровой машиной.

В паровых машинах двойного действия свежий пар поочередно подается в обе стороны рабочего цилиндра, в то время как отработанный пар с другой стороны цилиндра выходит в атмосферу или в конденсатор. Это потребовало создания достаточно сложного механизма парораспределения. Принцип двойного действия повышает скорость работы машины и улучшает плавность хода.

Поршень такой паровой машины соединён со скользящим штоком, выходящим из цилиндра. К этому штоку крепится качающийся шатун, приводящий в движение кривошип маховика. Система парораспределения приводится в действие другим кривошипным механизмом. Механизм парораспределения может иметь функцию реверса для того, чтобы можно было менять направление вращения маховика машины.

Паровая машина двойного действия примерно вдвое мощнее обычной паровой машины, и кроме того, может работать с намного более лёгким маховиком. Это уменьшает вес и стоимость машин.

Большинство возвратно-поступательных паровых машин использует именно этот принцип работы, что хорошо видно на примере паровозов. Когда такая машина имеет два или более цилиндров, кривошипы устанавливаются со сдвигом в 90 градусов для того, чтобы гарантировать возможность запуска машины при любом положении поршней в цилиндрах. Некоторые колёсные пароходы имели одноцилиндровую паровую машину двойного действия, и на них приходилось следить, чтобы колесо не останавливалось в мёртвой точке, то есть в таком положении, при котором запуск машины невозможен.

В 1832 году впервые в России на заводе была построена паровая машина с кривошипно-шатунным механизмом для военного парохода «Геркулес». Это была первая в мире удачная для пароходов паровая машина без балансира в 240 сил.[2] Англичане дважды, в 1822 и 1826 годах, делали попытку изготовить такие машины для своих пароходов, но они оказались неудачными и их пришлось заменить обычными балансирнами машинами. Лишь на пароходе "Горгон" ("Gorgon"), спущенном на воду в 1837 году, они смогли установить машину прямого действия (без балансира), которая стала работать нормально.[3]

Парораспределение

Индикаторная диаграмма, показывающая четырёхфазный цикл поршневой паровой машины двойного действия

В большинстве возвратно-поступательных паровых машин пар изменяет направление движения в каждом такте рабочего цикла, поступая в цилиндр и выходя из него через один и тот же коллектор. Полный цикл двигателя занимает один полный оборот кривошипа и состоит из четырёх фаз — впуска, расширения (рабочая фаза), выпуска и сжатия. Эти фазы контролируются клапанами в «паровой коробке», смежной с цилиндром. Клапаны управляют потоком пара, последовательно соединяя коллекторы каждой стороны рабочего цилиндра с впускным и выпускным коллектором паровой машины. Клапаны приводятся в движение клапанным механизмом какого-либо типа. Простейший клапанный механизм даёт фиксированную продолжительность рабочих фаз и обычно не имеет возможности изменять направление вращения вала машины. Большинство клапанных механизмов более совершенны, имеют механизм реверса, а также позволяют регулировать мощность и крутящий момент машины путём изменения «отсечки пара», то есть изменяя соотношение фаз впуска и расширения. Так как обычно один и тот же скользящий клапан управляет и входным и выходным потоком пара, изменение этих фаз также симметрично влияет на соотношения фаз выпуска и сжатия. И здесь существует проблема, поскольку соотношение этих фаз в идеале не должно меняться: если фаза выпуска станет слишком короткой, то большая часть отработанного пара не успеет покинуть цилиндр, и создаст существенное противодавление на фазе сжатия. В 1840-х и 1850-х годах было совершено множество попыток обойти это ограничение, в основном путём создания схем с дополнительным клапаном отсечки, установленном на основном распределительном клапане, но такие механизмы не показывали удовлетворительной работы, к тому же получались слишком дорогими и сложными. С тех пор обычным компромиссным решением стало удлинение скользящих поверхностей золотниковых клапанов с тем, чтобы впускное окно было перекрыто дольше, чем выпускное. Позже были разработаны схемы с отдельными впускными и выпускными клапанами, которые могли обеспечить практически идеальный цикл работы, но эти схемы редко применялись на практике, особенно на транспорте, из-за своей сложности и возникающих эксплуатационных проблем.[4][5]

Сжатие

Выпускное окно цилиндра паровой машины перекрывается несколько раньше, чем поршень доходит до своего крайнего положения, что оставляет в цилиндре некоторое количество отработанного пара. Это означает, что в цикле работы присутствует фаза сжатия, формирующая так называемую «паровую подушку», замедляющую движение поршня в его крайних положениях. Кроме того, это устраняет резкий перепад давления в самом начале фазы впуска, когда в цилиндр поступает свежий пар.

Опережение

Описанный эффект «паровой подушки» усиливается также тем, что впуск свежего пара в цилиндр начинается несколько раньше, чем поршень достигнет крайнего положения, то есть присутствует некоторое опережение впуска. Это опережение необходимо для того, чтобы перед тем, как поршень начнёт свой рабочий ход под действием свежего пара, пар успел бы заполнить то мёртвоё пространство, которое возникло в результате предыдущей фазы, то есть каналы впуска-выпуска и неиспользуемый для движения поршня объём цилиндра.[6]

Простое расширение

Простое расширение предполагает, что пар работает только при расширении его в цилиндре, а отработанный пар выпускается напрямую в атмосферу или поступает в специальный конденсатор. Остаточное тепло пара при этом может быть использовано, например, для обогрева помещения или транспортного средства, а также для предварительного подогрева воды, поступающей в котёл.

Компаунд

В процессе расширения в цилиндре машины высокого давления температура пара падает пропорционально его расширению. Поскольку теплового обмена при этом не происходит (адиабатический процесс), получается, что пар поступает в цилиндр с большей температурой, чем выходит из него. Подобные перепады температуры в цилиндре приводят к снижению эффективности процесса.

Один из методов борьбы с этим перепадом температур был предложен в 1804 году английским инженером Артуром Вульфом, который запатентовал Компаундную паровую машину высокого давления Вульфа. В этой машине высокотемпературный пар из парового котла поступал в цилиндр высокого давления, а после этого отработанный в нём пар с более низкой температурой и давлением поступал в цилиндр (или цилиндры) низкого давления. Это уменьшало перепад температуры в каждом цилиндре, что в целом снижало температурные потери и улучшало общий коэффициент полезного действия паровой машины. Пар низкого давления имел больший объём, и поэтому требовал большего объёма цилиндра. Поэтому в компаудных машинах цилиндры низкого давления имели больший диаметр (а иногда и большую длину) чем цилиндры высокого давления.

Такая схема также известна под названием «двойное расширение», поскольку расширение пара происходит в две стадии. Иногда один цилиндр высокого давления был связан с двумя цилиндрами низкого давления, что давало три приблизительно одинаковых по размеру цилиндра. Такую схему было легче сбалансировать.

Двухцилиндровые компаундные машины могут быть классифицированы как:

  • Перекрёстный компаунд — Цилиндры расположены рядом, их паропроводящие каналы перекрещены.
  • Тандемный компаунд — Цилиндры располагаются последовательно, и используют один шток.
  • Угловой компаунд — Цилиндры расположены под углом друг к другу, обычно 90 градусов, и работают на один кривошип.

После 1880-х годов компаундные паровые машины получили широкое распространение на производстве и транспорте и стали практически единственным типом, используемым на пароходах. Использование их на паровозах не получило такого широкого распространения, поскольку они оказались слишком сложными, частично из-за того, что сложными были условия работы паровых машин на железнодорожном транспорте. Несмотря на то, что компаундные паровозы так и не стали массовым явлением (особенно в Великобритании, где они были очень мало распространены и вообще не использовались после 1930-х годов), они получили определённую популярность в нескольких странах.[7]

1907

Множественное расширение

Упрощённая схема паровой машины с тройным расширением.
Пар высокого давления (красный цвет) от котла проходит через машину, выходя в конденсатор при низком давлении (голубой цвет). 1890-е

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четырёхкратного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объём которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых турбинах используется тот же принцип разделения потока на секции высокого, среднего и низкого давления.

Прямоточные паровые машины

Прямоточная паровая машина

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остаётся более или менее постоянным. Прямоточные машины одиночного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одиночного, так и двойного действия.

Паровые турбины

Паровая турбина представляет собой барабан либо серию вращающихся дисков, закреплённых на единой оси, их называют ротором турбины, и серию чередующихся с ними неподвижных дисков, закреплённых на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные (в активных, либо подобные в реактивных) лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в неё подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии. Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).

Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания.

Основной сферой применения паровых турбин является выработка электроэнергии (около 86 % мирового производства электроэнергии производится паровыми турбинами), кроме того, они часто используются в качестве судовых двигателей (в том числе на атомных кораблях и подводных лодках). Было также построено некоторое количество паротурбовозов, но они не получили широкого распространения и были быстро вытеснены тепловозами и электровозами.

Другие типы паровых двигателей

Кроме поршневых паровых машин, в 19-м веке активно использовались роторные паровые машины. В России, во второй половине 19-го века они назывались «коловратные машины» (то есть «вращающие колесо» от слова «коло» — «колесо»). Их было несколько типов, но наиболее успешной и эффективной была «коловратная машина» петербургского инженера-механика Н. Н. Тверского. Паровой двигатель Н. Н. Тверского . Машина представляла собой цилиндрический корпус, в котором вращался ротор-крыльчатка, а запирали камеры расширения особые запорные барабанчики. «Коловратная машина» Н. Н. Тверского не имела ни одной детали, которая бы совершала возвратно-поступательные движения и была идеально уравновешена. Двигатель Тверского создавался и эксплуатировался преимущественно на энтузиазме его автора, однако он использовался во многих экземплярах на малых судах, на фабриках и для привода динамо-машин. Один из двигателей даже установили на императорской яхте «Штандарт», а в качестве расширительной машины — с приводом от баллона со сжатым газом аммиаком, этот двигатель приводил в движение в подводном положении одну из первых экспериментальных подводных лодок — «подводную миноноску», которая испытывалась Н. Н. Тверским в 80-х годах 19-го столетия в водах Финского залива. Однако со временем, когда паровые машины были вытеснены двигателями внутреннего сгорания и электромоторами, «коловратная машина» Н. Н. Тверского была практически забыта. Однако эти «коловратные машины» можно считать прообразами сегодняшних роторных двигателей внутреннего сгорания.

Применение

Паровые машины могут быть классифицированы по их применению следующим образом:

Стационарные машины

Паровой молот Паровая машина на старой сахарной фабрике, Куба

Стационарные паровые машины могут быть разделены на два типа по режиму использования:

  • Машины с переменным режимом, к которым относятся машины металлопрокатных станов, паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.
  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях, а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

Транспортные машины

Паровоз

Паровые машины использовались для привода различных типов транспортных средств, среди них:

  • Пароход
  • Сухопутные транспортные средства:
  • Паровой самолёт.

В России первый действующий паровоз был построен Е. А. и М. Е. Черепановыми на Нижне-Тагильском заводе в 1834 году для перевозки руды. Он развивал скорость 13 вёрст в час и перевозил более 200 пудов (3,2 тонны) груза. Длина первой железной дороги составляла 850 м.

Преимущества паровых машин

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах.

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга, которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930-х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса. При этом паровая машина паровоза продолжает развивать тяговое усилие даже в случае остановки колёс (упор в стену), чем отличается от всех других видов двигателей, используемых на транспорте.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла. КПД тепловой машины равен

,
где
Wout — механическая работа, Дж;
Qin — затраченное количество теплоты, Дж.

Тепловой двигатель не может иметь КПД больший, чем у цикла Карно, в котором количество теплоты передается от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура. Следовательно, для паровых двигателей необходимы максимально высокая температура T1 в начале цикла (достигаемая, например, с помощью пароперегрева) и как можно более низкая температура T2 в конце цикла (например, с помощью конденсатора):

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 — 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 — 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.

Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.

У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C.

Нетрадиционные машины

На 4-м канале Британского телевидения с 1998 года проводится реалити-шоу «Scrapheap Challenge» («Вызов со свалки»), в котором друг против друга выступают две команды из трёх постоянных участников и одного специалиста. Командам даётся 10 часов для постройки заданной машины из частей, которые они находят на свалке металлолома, а затем устраиваются гонки. В 2007 году команды британских и американских инженеров строили колёсный пароход в духе Брюнеля. При этом британская команда использовала для управления паровой машиной электрическую систему с микровыключателями и соленоидными клапанами. Их пароход набрал скорость, близкую к дизельной лодке американской команды.

См. также

История паровых машин

Россия
Великобритания

Примечания

  1. Hulse David K (1999): «The early development of the steam engine»; TEE Publishing, Leamington Spa, UK, ISBN, 85761 107 1 (англ.)
  2. Н. А. Залесский «„Одесса“ выходит в море / возникновение парового мореплавания на Чёрном море 1827—1855», Ленинград, «Судостроение», 1987 год, страница 8.
  3. Н. А. Залесский «„Одесса“ выходит в море / возникновение парового мореплавания на Чёрном море 1827—1855», Ленинград, «Судостроение», 1987 год, страницы 8 и 9.
  4. Riemsdijk, John van: (1994) Compound Locomotives, pp. 2-3; Atlantic Publishers Penrhyn, England. ISBN 0-906899-61-3 (англ.)
  5. Carpenter, George W. & contributors (2000): La locomotive à vapeur: pp. 56-72; 120 et seq; Camden Miniature Steam Services, UK. ISBN 0-9536523-0-0 (фр.)
  6. Bell A.M. Locomotives. — London: Virtue and Company. — P. pp61-63. (англ.)
  7. Riemsdijk, John van: (1994) Compound Locomotives, Atlantic Publishers Penrhyn, England. ISBN 0-906899-61-3  (англ.)

Литература

  • Паровые машины // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  • Паровые машины. История, описание и приложение их. 1838 г., СПб.: тип. Эдуарда Праца и Ко. — 234 с.
  • Брандт А. А. Очерк истории паровой машины и применения паровых двигателей в России, СПб., 1892.
  • Тонков Р. Р. К истории паровых машин в России. — «Горный журнал», № 6, 1902 г.
  • Лебедев В. И. Занимательная техника в прошлом. Ленинград: «Время», 1933 г. — 198 с.
  • Люди русской науки: Очерки о выдающихся деятелях естествознания и техники / Под ред. С. И. Вавилова. — М., Л.: Гос. изд-во техн.-теоретической лит-ры, 1948 г.
  • Конфедератов И. Я. Иван Иванович Ползунов. — М. — Л.: Госэнергоиздат, 1954 г. — 296 с.

Ссылки

ПАРОВОЙ ДВИГАТЕЛЬ - это... Что такое ПАРОВОЙ ДВИГАТЕЛЬ?

ПАРОВОЙ ДВИГАТЕЛЬ

ПАРОВОЙ ДВИГАТЕЛЬ, ДВИГАТЕЛЬ, приводимый в действие силой пара. Пар, получаемый путем нагрева воды, используют для движения. В некоторых двигателях сила пара заставляет двигаться поршни, расположенные в цилиндрах. Таким образом создается возвратно-поступательное движение. Подсоединенный механизм обычно преобразует его во вращательное движение. В паровозах (локомотивах) используются ПОРШНЕВЫЕ ДВИГАТЕЛИ. В качестве двигателей используют также ПАРОВЫЕ ТУРБИНЫ, которые дают непосредственно вращательное движение, вращая ряд колес с лопатками. Паровые турбины приводят в действие генераторы электростанций и винты кораблей. В любом паровом двигателе происходит превращение тепла, вырабатываемого при нагреве воды в паровом котле (бойлере) в энергию движения. Тепло может подаваться от сжигания топлива в печи или от атомного реактора. Самый первый в истории паровой двигателей представлял собой род насоса, при помощи которого откачивали воду, заливающую шахты. Его изобрел в 1689 г. Томас СЭЙВЕРИ. В этой машине, совсем простой по конструкции, пар конденсировался, превращаясь в небольшое количество воды, и за счет этого создавался частичный вакуум, благодаря чему отсасывалась вода из шахтного ствола. В 1712 г. Томас НЬЮКОМЕН изобрел поршневой насос, приводимый в действие паром. В 1760-е гг. Джеймс ВАТТ улучшил конструкцию Ньюкомена и создал намного более эффективные паровые двигатели. Вскоре их стали использовать на фабриках для приведения в действие станков. В 1884 г. английский инженер Чарльз Пар-соне (1854-1931) изобрел первую применимую на практике паровую турбину. Его конструкции были настолько эффективны, что ими вскоре стали заменять паровые двигатели возвратно-поступательного действия на электростанциях. Наиболее удивительным достижением в области паровых двигателей было создание полностью замкнутого, работающего парового двигателя микроскопических размеров. Японские ученые создали его, используя методы, служащие для изготовления ИНТЕГРАЛЬНЫХ СХЕМ. Небольшой ток, проходящий по электронагревательному элементу, превращает каплю воды в пар, который движет поршень. Теперь ученым предстоит открыть, в каких областях это устройство может найти практическое применение.



Паровые двигатели, такие как раньше использовались в локомотивах, работают на производимом при нагревании воды паре. Угольная или дровяная топка (1) нагревает котел, напол-ненный водой (2), который производит пар. Пар поднимается и через сухопарник(3) выталкивается через трубы в цилиндр (4), где он вызывает обратное движение поршня (5). Связанный с поршнем рычаг (6) это золотниковый клапан (7), который сначала позволяет пару попасть в цилиндр (как показано), закрывая выпускное окно (8). Это создает давление, которое двигает поршень вперед и приводит к тому, что золотниковый клапан становится в такое положение, когда выпускное окно открывается и пар выходит наружу. Движение колес заставляет поршень двигаться назад, и все начинается снова.

Научно-технический энциклопедический словарь.

  • ПАРОВАЯ ТУРБИНА
  • ПАРОВОЙ ТРАКТОР

Полезное


Смотреть что такое "ПАРОВОЙ ДВИГАТЕЛЬ" в других словарях:

  • ПАРОВОЙ ДВИГАТЕЛЬ — (Steam motor) машина, преобразующая энергию пара в механическую работу. К паровым двигателям относятся паровые машины и паровые турбины, Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

  • Паровой двигатель — Паровая машина  тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина любой… …   Википедия

  • паровой двигатель — garo variklis statusas T sritis fizika atitikmenys: angl. steam engine; steam power engine vok. Dampfkraftmaschine, f; Dampfmaschine, f rus. паровой двигатель, m pranc. moteur à vapeur, m …   Fizikos terminų žodynas

  • Паровой автомобиль — …   Википедия

  • ПАРОВОЙ — 1. ПАРОВОЙ1, паровая, паровое. 1. прил. к пар1. Паровое отопление. || Служащий для получения, скопления пара. Паровой котел. 2. Движимый, приводимый в действие силой пара (тех.). Паровое судно. Паровой двигатель (двигатель, преобразующий энергию… …   Толковый словарь Ушакова

  • ПАРОВОЙ — 1. ПАРОВОЙ1, паровая, паровое. 1. прил. к пар1. Паровое отопление. || Служащий для получения, скопления пара. Паровой котел. 2. Движимый, приводимый в действие силой пара (тех.). Паровое судно. Паровой двигатель (двигатель, преобразующий энергию… …   Толковый словарь Ушакова

  • ПАРОВОЙ — 1. ПАРОВОЙ1, паровая, паровое. 1. прил. к пар1. Паровое отопление. || Служащий для получения, скопления пара. Паровой котел. 2. Движимый, приводимый в действие силой пара (тех.). Паровое судно. Паровой двигатель (двигатель, преобразующий энергию… …   Толковый словарь Ушакова

  • ДВИГАТЕЛЬ — • ДВИГАТЕЛЬ (мотор), механизм, преобразующий энергию (такую как тепло или электричество) в полезную работу. Термин «мотор» иногда применяется к ДВИГАТЕЛЮ ВНУТРЕННЕГО СГОРАНИЯ (который преобразует тепло, вырабатываемое горящими газами, в возвратно …   Научно-технический энциклопедический словарь

  • ПАРОВОЙ ТРАКТОР — ПАРОВОЙ ТРАКТОР, большая, тяжелая самоходная машина, приводимая в действие паром. Когда то применялся для передвижения фермерских повозок и других тяжелых грузов; теперь устарел. Подобные машины применялись также на ярмарках и в цирках для… …   Научно-технический энциклопедический словарь

  • Двигатель — У этого термина существуют и другие значения, см. Двигатель (значения). Двигатель, мотор (от лат. motor приводящий в движение)  устройство, преобразующее какой либо вид энергии в механическую. Этот термин используется с конца XIX века… …   Википедия

Паровая машина - применение | Технологии

Паровая машина применяется как приводной двигатель в различных насосных станциях,  на паровых судах, локомотивах, паровых автомобилях, тягачах, других транспортных средствах. Паровая машина способствовала обширному распространению коммерческого использования машин на различных предприятиях и считается энергетической базой промышленной революции XVIII века. Позднее агрегат была вытеснен различными двигателями внутреннего сгорания, турбинами и электромоторами, у которых КПД выше. Подобные турбины формально являются разновидностью паровых машин, они до сих пор достаточно широко применяются как приводы генераторов электроэнергии. Около 86% все производимой в мире электроэнергии вырабатывается с помощью  турбин. Нужно знать, что для привода машины необходим паровой котел. Пар, который расширяется, давит на лопатки турбины или на поршень, их движение передается другим механическим частям. Одно из достоинств двигателей внешнего сгорания состоит в том, что, так как котел отделяется от винтовой машины, здесь можно использовать практически любой вид топлива. Стационарные паровые машины бывают двух типов по режиму использования: с переменным режимом и силовые установки.

К первым можно отнести машины металлопрокатных станов, паровые лебедки и аналогичные устройства, которые часто останавливаются и меняют направление вращения. Силовые машины останавливаются редко и не меняют направление вращения. С их помощью включаются энергетические двигатели на электростанциях, промышленные двигатели, которые используют на заводах, фабриках, кабельных железных дорогах до распространения электрической тяги. Двигатели малой мощности применяются в специальных устройствах и на судовых моделях. Лебедка – это стационарный двигатель, но установленный на опорной раме, чтобы можно было перемещать. Она может быть закреплена за якорь тросом. Паровая винтовая машина – это новый тип двигателя. ПВМ была разработана в России, на ее конструкцию, узлы и системы получено около 25 патентов за рубежом и в России. ПВМ практически по всем показателям существенно превосходит классическую лопаточную паровую турбину в диапазоне мощностью 200-1500 кВт. ПВМ считается наиболее перспективной базой для создания мини-тэц. В мини-тэц должны применяться только местные топливные ресурсы, такие как уголь, отходы лесопереработки, торф.


Наш завод производит теплообменники, а на сайте вы найдете отзывы на охладитель воздуха нашего производства.

История паровых машин

Loading...

Первые наработки.

Начнем с того, что еще в семнадцатом веке пар стали рассматривать как средство для привода, проводили с ним всяческие опыты, и лишь только в 1643 году Эванджелистом Торричелли было открыто силовое действие давления пара. Кристиан Гюйгенс через 47 лет спроектировал первую силовую машину, приводившуюся в действие взрывом пороха в цилиндре. Это был первый прототип двигателя внутреннего сгорания. На аналогичном принципе устроена водозаборная машина аббата Отфея. Вскоре Дени Папен решил заменить силу взрыва на менее мощную силу пара. В 1690 году им была построена первая паровая машина, известная также как паровой котел.

Она состояла из поршня, который с помощью кипящей воды перемещался в цилиндре вверх и за счет последующего охлаждения снова опускался – так создавалось усилие. Весь процесс происходил таким образом: под цилиндром, который выполнял одновременно и функцию кипятильного котла, размещали печь; при нахождении поршня в верхнем положении печь отодвигалась для облегчения охлаждения.

Позже два англичанина, Томас Ньюкомен и Коули – один кузнец, другой стекольщик, – усовершенствовали систему путем разделения кипятильного котла и цилиндра и добавления бака с холодной водой. Эта система функционировала с помощью клапанов или кранов – одного для пара и одного для воды, которые поочередно открывались и закрывались. Затем англичанин Бэйтон перестроил клапанное управление в подлинно тактовое.

Применение паровых машин на практике.

Машина Ньюкомена вскоре стала известна повсюду и, в частности, была усовершенствована, разработанной Джеймсом Уаттом в 1765 году системой двойного действия. Теперь паровая машина оказалась достаточно завершенной для использования в транспортных средствах, хотя из-за своих размеров лучше подходила для стационарных установок. Уатт предложил свои изобретения и в промышленности; он построил также машины для текстильных фабрик.

Первая паровая машина, используемая в качестве средства передвижения, был изобретена французом Николя Жозефом Куньо, инженером и военным стратегпм-любителем. В 1763 или 1765 году он создал автомобиль, который мог перевозить четырех пассажиров при средней скорости 3,5 и максимальной – 9,5 км/час. За первой попыткой последовала вторая – появился автомобиль для транспортировки орудий. Испытывался он, естественно, военными, но из-за невозможности продолжительной эксплуатации (непрерывный цикл работы новой машины не превышал 15 минут) изобретатель не получил поддержки властей и финансистов. Между тем в Англии совершенствовалась паровая машина. После нескольких безуспешных, базировавшихся на машине Уаттa попыток Мура, Вильяма Мердока и Вильяма Саймингтона, появилось рельсовое транспортное средство Ричарда Тревисика, созданное по заказу Уэльской угольной шахты. В мир пришел активный изобретатель: из подземных шахт он поднялся на землю и в 1802 году представил человечеству мощный легковой автомобиль, достигавший скорости 15 км/час на ровной местности и 6 км/час на подъеме.

Приводимые в движение паром транспортные средства все чаще использовались и в США: Натан Рид в 1790 году удивил жителей Филадельфии своей моделью парового автомобиля. Однако еще больше прославился его соотечественник Оливер Эванс, который спустя четырнадцать лет изобрел автомобиль-амфибию. После наполеоновских войн, во время которых «автомобильные эксперименты» не проводились, вновь началась работа над изобретением и усовершенствованием паровой машины. В 1821 году ее можно было считать совершенной и достаточно надежной. С тех пор каждый шаг вперед в сфере приводимых в движение паром транспортных средств определенно способствовал развитию будущих автомобилей.

В 1825 году сэр Голдсуорт Гарни на участке длиной 171 км от Лондона до Бата организовал первую пассажирскую линию. При этом он использовал запатентованную им карету, имевшую паровой двигатель. Это стало началом эпохи скоростных дорожных экипажей, которые, однако, исчезли в Англии, но получили широкое распространение в Италии и во Франции. Подобные транспортные средства достигли наивысшего развития с появлением в 1873 году «Реверанса» Амедэ Балле весом 4500 кг и «Манселя» – более компактного, весившего чуть более 2500 кг и достигавшего скорости 35 км/час. Оба были предвестниками той техники исполнения, которая стала характерной для первых «настоящих» автомобилей. Несмотря на большую скорость кпд паровой машины был очень маленький. Болле был тем, кто запатентовал первую хорошо действующую систему рулевого управления, он так удачно расположил управляющие и контрольные элементы, что мы и сегодня это видим на приборном щитке.

Несмотря на грандиозный прогресс в области создания двигателя внутреннего сгорания, сила пара все еще обеспечивала более равномерный и плавный ход машины и, следовательно, имела много сторонников. Как и Болле, который построил и другие легкие автомобили, например Rapide в 1881 году со скоростью движения 60 км/час, Nouvelle в 1873 году, которая имела переднюю ось с независимой подвеской колес, Леон Шевроле в период между 1887 и 1907 годами запустил несколько автомобилей с легким и компактным парогенератором, запатентованным им в 1889 году. Компания De Dion-Bouton, основанная в Париже в 1883 году, первые десять лет своего существования производила автомобили с паровым двигателями и добилась при этом значительного успеха – ее автомобили выиграли гонки Париж-Руан в 1894 году.

Успехи компании Panhard et Levassor в использовании бензина привели, однако, к тому, что и De Dion перешел на двигатели внутреннего сгорания. Когда братья Болле стали управлять компанией своего отца, они сделали то же самое. Затем и компания Chevrolet перестроила свое производство. Автомобили с паровыми двигателями все быстрее и быстрее исчезали с горизонта, хотя в США они использовались еще до 1930 года. На этом самом моменте и прекратилось производство и изобретение паровых машин

 

☑️ Паровая машина: принцип работы, устройство, схема

В наши дни паровые машины ассоциируются с пережитком прошлого. Они были тяжелыми, крайне неэкономичными и загрязняли окружающую среду. Тем не менее их производство позволило быстро развить промышленность и транспорт. Изобретение паровой машины — огромный технологический скачок в истории человечества. Как устроен паровой двигатель и используется ли он до сих пор?

Кто изобрел паровой двигатель?

Греческий изобретатель Хернон Александрийский считается инициатором создания первой паровой машины.Это было простое устройство, состоящее из двух элементов. Первый представлял собой водогрейный котел и шар, закрепленный на оси. Интересно, что это был не обычный шар, а с установленными с двух сторон насадками. Горячий пар направлялся к подвесному шару и выходил через соответствующие сопла. Из-за силы отдачи он начал вращаться вокруг своей оси. К сожалению, это устройство не имело никакого практического применения.

Паровой двигатель — изобретение

Паровой двигатель считается фактическим паровым двигателем, разработанным в 1710 Томасом Ньюкоменом в Англии.Конструкция этой машины уже напоминала современные паровые машины. За подвод энергии отвечал поршень, перемещающийся внутри цилиндра за счет подаваемого горячего пара. Двигатель Томаса Ньюкомена, вопреки историческому изобретению Хернона, уже нашел подходящее применение. Он использовался в шахтах и ​​использовался для откачки воды.

Джеймс Уатт в эпоху промышленной революции

У паровой машины, разработанной Томасом Ньюкоменом, был серьезный недостаток. Он действовал очень медленно.К счастью, в 1782 году, и Джеймс Уатт модернизировали эту идею. Кульминацией его творчества стала двухсторонняя паровая машина, получившая, наконец, вариант с центробежным регулятором вращения. Благодаря этому промышленная революция смогла двигаться «полным ходом». В качестве любопытства следует добавить, что было выпущено 250 штук этой машины.

Как работает паровой двигатель?

Конструкция классической паровой машины на основе решения Джеймса Уатта относительно проста.Вода в чайнике доводится до кипения путем ее нагревания. Для этой цели чаще всего использовали уголь или дрова. Образовавшийся водяной пар поступает в цилиндр и перемещает внутри него поршень. Работа всей системы довольно интересна, потому что горячий пар подается попеременно в переднюю и заднюю часть цилиндра.

Работу паровой машины можно описать четырьмя пунктами:

  1. Водяной пар поступает в цилиндр через открытый впускной канал.
  2. Из-за преобладающего давления поршень смещается.
  3. При достижении уставки клапан закрывается.
  4. Поршень начинает возвращаться в исходное положение, выпуская при этом скопившийся пар.

На начальных этапах развития паровых двигателей для движения использовался насыщенный пар. Это было самое простое решение, но неэффективное. Этот пар конденсировался на стенках цилиндров, что, как следствие, вызывало тепловые потери и снижало эффективность всей системы.Гораздо более эффективным решением оказалось использование ненасыщенного пара (с температурой выше точки кипения воды). Он под высоким давлением подавался в цилиндр высокого давления, а затем подавался в цилиндр низкого давления. Двойное расширение гарантировало большую эффективность двигателя.

Преимущества паровой машины

Одним из несомненных достоинств паровых машин является их простая конструкция. Это напрямую влияет на высокую механическую долговечность.Конечно, при условии, что все движущиеся части правильно смазываются и обслуживаются.

Преимуществом также является простота получения топлива и схема работы данного типа двигателя. Благодаря этому можно легко и быстро диагностировать и устранить дефект.

К преимуществам и недостаткам паровой машины относятся также так называемые многотопливная емкость . Сжигать можно не только уголь, но и другие виды твердого топлива, например дрова. Как насчет производительности? Здесь мощность пара может сильно удивить, потому что эти двигатели генерируют очень высокий крутящий момент и, что лучше всего, на стартовой скорости.

. Недостатки паровой машины

Самым большим недостатком паровых двигателей является выброс огромного количества побочных продуктов сгорания угля. Кроме того, чтобы привести в движение паровоз на участке железной дороги средней протяженности, нужно взять на борт десяток или несколько десятков тонн угля. Не будем забывать и о том, что это сырье недешевое.

Добавим к.п.д. паровой машины, который обычно не превышает 10%, и окажется, что несмотря на огромное количество топлива, количество получаемой от него энергии тревожно мало.Еще одним недостатком является огромный вес паровых двигателей, которые, несомненно, намного массивнее более популярных двигателей внутреннего сгорания.

Наконец, есть еще один существенный недостаток, это длительное время подготовки двигателя к работе, т.е. пуска. Чтобы паровая машина заработала, потребуется несколько десятков минут. Это время должно быть включено, среди прочего проверка и смазка движущихся частей, очистка топки, подготовка и зажигание топлива и, наконец, нагрев воды (только запуск паровой машины требует огромного количества топлива).В связи с этим даже крупногабаритные дизели, установленные на локомотивах, гораздо раньше выходят на рабочую температуру.

Паровой двигатель в автомобиле

Паровые двигатели

, несмотря на столь многие преимущества, успешно вытесняются гораздо более эффективными и экономичными дизельными двигателями. Другая проблема — чисто экологическое существо. Не обманывая себя, сжигание огромного количества угля не остается нейтральным по отношению к окружающей среде. К счастью, эти величественные двигатели не полностью забыты и в 2001 году был создан прототип современной паровой машины.

Это ZEE или двигатель с нулевым уровнем выбросов. Эта трехцилиндровая система объемом 992 куб. см, 3 , вырабатывала 50 кВт мощности. Как работал такой двигатель? На каждый цилиндр приходилась горелка, нагревающая воду в замкнутой системе. Полученный таким образом водяной пар достигал давления 50 бар.

Двигатель ZEE отличался высоким КПД, достигавшим даже 23%. Это означает, что он был более чем в 2 раза эффективнее двигателей, устанавливаемых на паровозы. К сожалению, этого еще недостаточно, чтобы конкурировать с тогдашними бензиновыми или дизельными агрегатами.

Резюме

Паровые двигатели, несомненно, способствовали развитию отрасли. Использование пара для привода машин на транспорте и в промышленности казалось вечным решением, и так оно и было на самом деле. Прошло более 300 лет с тех пор, как Томас Ньюкомен построил паровую машину в 1710 году. Паровые двигатели долгое время были важной частью экономики во всем мире. Можем ли мы рассчитывать на их возвращение?

Все указывает на то, что интенсивное развитие технологий в конце 20 века успешно заменило традиционные паровые двигатели.Хотя на самом деле они очень надежны и обладают относительно высокой производительностью, самой большой проблемой является тип используемого в них топлива. Все упирается в подогрев воды, который к тому же должен быть дешевым, легким и высокомобильным решением. К сожалению, современные двигатели внутреннего сгорания в этом отношении гораздо полезнее, и нет никаких признаков большой отдачи от паровых двигателей.

Тем не менее, следует признать, что, несмотря на долгую историю этого типа машин, большое количество людей испытывает к ним огромную любовь.В особенности это относится к энтузиастам железной дороги, для которых паровозы — настоящая редкость, вызывающая большой ажиотаж.

Самые большие паровые двигатели когда-то использовались на кораблях, таких как RMS Lusitania.

Главный редактор Joblife.pl

Уже 11 лет он занимается созданием специализированного консультативного контента.Его знания получены из многоязычных информационных каналов и научных энциклопедий. Лично я любитель горных путешествий и энтузиаст маркетинга.

.

Паровоз - Интересные факты - Bryk.pl

Паровые двигатели также используются в быту в 21 веке.Энергия, которую они производят, используется в ядерных реакторах, которые, вопреки распространенному мнению об их сложном строении, используют явление превращения воды в пар, который вырабатывает энергию и задает турбина в движении движущая сила электрогенераторов.

Истоки паровой машины относятся к I веку, когда Герон Александрийский (Греция) сконструировал паровую машину, состоящую из полого шара, подвешенного на двух трубах, по которым к нему подавался пар из котла.Подаваемый таким образом пар накапливался в сфере, а затем выходил через еще две трубки, выходящие из сферы.

Вт 1710. Томас Ньюкомен (Англия) сконструировал поршневую машину на основе развальцовки поршня внутри цилиндра. Индуцированный пар заставлял поршень в цилиндре подниматься, который затем охлаждался для конденсации пара. Эта обработка привела к падению давления в цилиндре и втягиванию поршня. Эта машина использовалась, в частности, в шахтах, где их использовали для откачки воды.Изобретение, однако, было медленным и неэффективным, поскольку цилиндр приходилось попеременно охлаждать и нагревать, что занимало много времени. Эту проблему решил Джеймс Уатт.

Этот шотландский инженер 1769 года. получено разрешение на модернизацию поршневой машины Ньюкомена. В 1782 году. построил двухстороннюю паровую машину, а в 1784 г. получил патент на «универсальную паровую машину с центробежным регулятором скорости», ускорившую ход промышленной революции. В 1775 году. начал производство паровых машин в компании, основанной вместе с М.Фабрика Boulton в Сохо недалеко от Бирмингема. До 1800 г. их удалось изготовить 250 штук.

Двигатель Уатта отличался от своего предшественника тем, что пар накапливался в отдельном баке, а не в цилиндре. Это изменение привело к снижению тепловых потерь, и новый двигатель работал быстрее, потому что цилиндр не нужно было постоянно охлаждать и прогревать. Эти модернизации сделали паровой двигатель викторианской эпохи устройством, которое можно использовать во многих областях, в том числев в полиграфии, в прядении, а также в сельском хозяйстве и в парках развлечений (движущиеся карусели). Эксклюзивные парикмахерские могли похвастаться аппаратами для массажа головы, а в домах были пылесосы. Паровозы также модернизировали наземный транспорт, а водный транспорт - пароходы.

Первая паровая машина была введена в эксплуатацию в Царстве Польском в 1839 году на текстильной фабрике Людвика Гейера. Эта машина имела мощность 60 л.с. и использовалась в ткацкой промышленности.

.

Модель паровой машины | Sklep-astromedia.pl

Как работает паровой двигатель:

Знаете ли вы, что паровой двигатель не был изобретен Уаттом? Баня Херон I века нашей эры считается первой паровой машиной. (также в наборах AstroMedia), то следует упомянуть работы Томаса Ньюкомена, Томаса Савери и других.

Сжигая дрова или уголь под наполненным котлом, воду доводили до кипения. Полученный таким образом пар подавался через систему газораспределения в цилиндр.Поршень приводился в движение поочередным впрыском пара высокого давления в переднюю и заднюю части цилиндра (разделенные поршнем). Генерируемая энергия затем передавалась на коленчатый вал и маховик через шатун. Для стабилизации вращения в паровых машинах использовали центробежный регулятор.

Описание:

Модель паровой машины - отличный подарок для каждого любителя моделирования. Это будет отличным развлечением не только для детей, но и для взрослых.

Набор, с помощью которого вы соберете настоящую работающую паровую машину из картона !
Пар производится в алюминиевом котле, обогреваемом пятью чайными свечами, и все это надежно заключено в проволочную котельную. Паровая система отделена от картонной конструкции , что обеспечивает ее долговечность, а основные элементы дополнительно покрыты альбуминовой пленкой.

Модель паровой машины, которую вы знаете в нашем предложении, состоит в основном из элементов, доработанных до мельчайших деталей.Мы заботимся о вашем удовлетворении, именно поэтому качество модели на высшем уровне.


Штампованный картон позволяет снимать детали без вырезания. Готовый мотор может двигать, например, карусель (приобретается отдельно) почти час.

Паровоз - представленная модель - отличная идея для проведения свободного времени. Складывание машины позволит вам успокоиться, сосредоточиться, а также доставит массу удовольствия от выполненной задачи.
Приглашаем к покупке!


Размеры в сложенном виде:

около 300 мм x 210 мм x 210 мм

Содержимое набора:

  • 2 вырубных листа картона 0,5 мм
  • 4 вырезанных листа картона толщиной 0,4 мм
  • 2 напечатанных неразрезанных листа картона
  • 1 твердая плита 6 x 210 x 297 мм
  • 1 лист алюминия 0,18 мм
  • 1 алюминиевая коробка с завинчивающейся крышкой
  • 1 сетка из оцинкованной проволоки, 220x330 мм
  • 5 стальных деталей диаметром 1,5 мм: коленчатый вал, держатель клапана, ось 40 мм, 2 оси 27 мм
  • 15 дисков d1,5 x D15 мм с ПВХ толщиной 1 мм
  • 1 силиконовая трубка d0.8 x D2,8 x 110 мм, 1 силиконовая трубка d5 x D7 x 275 мм
  • 1 пластиковая перчатка, 3 ватных палочки, 2 шприца 2 мл и 10 мл
  • 1 магнит d6 x D15 x h20 мм, 1 пенопластовое уплотнение 2,5 см,
  • 1 оцинкованная шайба, D8,4 x D16 мм, 2 x 2 уплотнительных кольца D6,5 мм и D8,5 мм
  • 1 шаблон котельной, 1 шаблон для алюминиевого листа
  • Польская инструкция

Проблема с установкой? Посетите наш блог.

.

Паровой двигатель - Изобретения и открытия

Паровая машина также является поршневой паровой машиной.

Вместо лошадей, запряженных в беговую дорожку, приводящих в движение насосы, откачивающие воду из шахты, простой английский горняк (кузнец по профессии) - Томас Ньюкомен вместе с Джоном Коули (стекольщик) построил в 1712 году паровую машину .

Их машина состояла из цилиндра, в котором поршень двигался вместе с валом.

Вал был прикован к маятнику и к насосу, который должен был приводить в движение.К одной из цепей прикреплен дополнительный груз.

Цилиндр был снабжен двумя трубками, один конец которых находился в паровом котле.
Когда поршень находился в нижнем положении, клапан открывался, пар из котла поступал в цилиндр и поднимал поршень вверх. В этом ей помогал подвешенный на цепи груз. Затем закрывали клапан подачи пара и открывали другой клапан, чтобы впустить в цилиндр немного холодной воды.

Пар в цилиндре охлаждался и конденсировался на стенках сосуда, а так как его объем ранее во много раз превышал объем воды, в которую он превращался, то под поршнем создавалось разрежение.
Затем на первый план выступило атмосферное давление воздуха, оно с огромной силой давило на поршень сверху, возвращая его в нижнее, исходное положение.
И так далее...
К сожалению, кроме огромного "аппетита к углю", машина характеризовалась еще и неравномерностью движения. Поршень поднимался гораздо медленнее, чем опускался вниз, и поэтому его нельзя было использовать ни для чего, кроме как для привода насосов. Несмотря на это и несмотря на необходимость постоянно менять вентили, он сохранился в шахтах уже несколько десятков лет.

Кстати: подросток Хамфри Поттер хорошо справился с проблемой клапанов. Вместо того, чтобы весь день вручную открывать и закрывать клапаны, он прикрепил к ним веревки, а другой конец — к маятнику. Несколько попыток найти нужный момент, когда клапаны вот-вот сработают и… готовы. Наградой за уход с рабочего места (даже при том, что станок работал без нареканий) была сильная трепка от мастера.
Однако эта идея была охотно использована с другими машинами.

В 1816 году шотландский священник Роберт Стирлинг в качестве альтернативы паровым машинам, где происходили взрывы паровых котлов, запатентовал более безопасный двигатель «горячий воздух»


Посмотрите, как работает модель машины, похожая на ту, которую сконструировал Джеймс Уатт:

.

История паровой машины и ее применения. Паровозы

Принцип действия паровой машины

Satisfied

Annotation

1. Theoretical part

1.1 Time chain

1.2 Steam engine

1.2.1 Steam boiler

1.2.2 Steam turbines

1.3

First steam machines steamboats

1.3.2 Рождение двухколесных транспортных средств

1.4 Использование паровых двигателей

1.4.1.

Библиография

Приложение

Паровая машина Полезное действие

Настоящая исследовательская работа состоит из 32 листов и включает теоретическую часть, практическую часть, приложение и заключение.В теоретической части вы узнаете принцип действия паровых машин и механизмов, их историю и роль их применения в жизни. В практической части подробно описан процесс проектирования и испытаний паровой машины в домашних условиях. Эта исследовательская работа может служить наглядным примером работы и использования энергии пара.

Введение

Мир повинуется всем капризам природы, где машины приводятся в движение силой мускулов или силой водяных колес и ветряных мельниц - таким был мир технологий до создания паровой машины.например, лист бумаги), который находится на его пути. В результате после долгих экспериментов появилась паровая машина.И представьте себе заводы с трубами, паровыми машинами и турбинами, паровозы и пароходы - целый сложный и могучий мир рукотворной паровой техники. единственный универсальный двигатель и сыграл огромную роль в развитии человечества. паровая машина послужила толчком к дальнейшему развитию транспортных средств. В течение ста лет это был единственный промышленный двигатель, универсальность которого позволяла использовать его на заводах, железных дорогах и в военно-морском флоте.Изобретение паровой машины – огромный скачок, стоявший на рубеже двух эпох. И с веками весь смысл этого изобретения чувствуется еще сильнее.

Гипотеза:

Сможете ли вы построить простейший механизм, работающий на пару, своими руками?

Цель работы: сконструировать механизм, который движется в паре.

Цель исследования:

1. Изучить научную литературу.

2. Спроектировать и построить простейший паровой механизм.

3. Рассмотрите возможность повышения производительности в будущем.

Настоящая исследовательская работа послужит учебным пособием на уроках физики для старшеклассников и всех, кто интересуется этим предметом.

Паровая машина представляет собой тепловую поршневую машину, в которой потенциальная энергия водяного пара от парового котла преобразуется в механическую работу возвратно-поступательного движения поршня или вращения вала.

Пар является одним из наиболее распространенных теплоносителей в тепловых системах с подогревом жидкого или газообразного рабочего тела, помимо воды и термальных масел.Водяной пар имеет ряд преимуществ, в т.ч. простота и гибкость использования, низкая токсичность, возможность обеспечить значительное количество энергии в технологическом процессе. Его можно использовать в различных системах, в которых хладагент находится в прямом контакте с различным оборудованием, что эффективно способствует снижению затрат на энергию, сокращению выбросов и быстрой окупаемости.

Закон сохранения энергии — фундаментальный закон природы, установленный опытным путем, согласно которому энергия изолированной (замкнутой) физической системы сохраняется во времени.Другими словами, энергия не может появиться из ничего и никуда не исчезнуть, она может только переходить из одной формы в другую. Принципиально, согласно теореме Нётер, закон сохранения энергии есть следствие однородности времени, и в этом смысле он универсален, т. е. присущ системам самой разной физической природы.

3000 г. до н.э. - первые дороги появились в Древнем Риме.

2000 г. до н.э. - круг принял более привычный для нас вид.Теперь у него есть ступица, обод и соединяющие их спицы.

1700 г. до н.э. НС. - появились первые дороги, обшитые деревянными балками.

312 до н.э. - Первые каменные дороги были построены в Древнем Риме. Стена была толщиной в метр.

1405 - появились первые весенние конные экипажи.

1510 - гужевая повозка получила кузов со стенками и крышей. Во время путешествия у пассажиров была возможность защититься от непогоды.

1526 - Немецкий ученый и художник Альбрехт Дюрер разработал интересный проект «безлошадной повозки», приводимой в движение силой мускулов людей.Люди, идущие по бокам вагона, крутили специальные ручки. Это вращение через червячную передачу передавалось на колеса экипажа. К сожалению, вагон не был изготовлен.

16:00 - Саймон Стевин строит яхту на колесах, приводимую в движение ветром. Он стал первой конструкцией безлошадной повозки.

1610 - вагоны подверглись двум существенным улучшениям. Во-первых, ненадежные и слишком мягкие ремни, раскачивающие пассажиров в пути, заменили на стальные пружины. Во-вторых, была улучшена конская упряжь.Теперь лошадь тащила повозку не за шею, а за грудь.

1649 - Прошли первые испытания по использованию в качестве движущей силы ранее созданной человеком пружины кручения. Повозка с пружинным приводом была построена Иоганном Хоухом в Нюрнберге. Однако историки оспаривают эту информацию, так как есть версия, что вместо большой пружины в повозке сидел человек, который приводил механизм в движение.

1680 - первые образцы верховой езды в крупных городах, общественный транспорт.

1690 - Штефан Фарффлер из Нюрнберга изобретает трехколесную тележку, которая движется с помощью двух ручек, вращающихся вручную. Благодаря этому приводу конструктор автомобиля смог передвигаться с места на место без помощи ног.

1698 - Англичанин Томас Севери построил первый паровой котел.

1741 - Русский механик-самоучка Леонтий Лукьянович Шамшуренков направил в канцелярию Нижегородской губернии "рапорт" с описанием "самостоятельного инвалидного кресла".

1769 Французский изобретатель Кюньо строит первую в мире паровую машину.

1784 Джеймс Уатт строит первую паровую машину.

1791 - Иван Кулибин сконструировал трехколесную самоходную повозку, вмещавшую двух пассажиров. Привод осуществлялся через педальный механизм.

1794 - Паровая машина Cugno была передана в дар «свалке машин, инструментов, моделей, чертежей и описаний всех видов декоративно-прикладного искусства» как очередная механическая диковинка.

1800 - бытует мнение, что в этом году в России построили первый в мире велосипед.Его автором был крепостной Ефим Артамонов.

1808 - На улицах Парижа появился первый французский велосипед. Он был сделан из дерева и состоял из перекладины, соединяющей два колеса. В отличие от современного велосипеда, у него не было ни руля, ни педалей.

1810 - Судоходство начало зарождаться в Америке и Европе. В крупных городах появились целые улицы и даже кварталы, населенные ямщиками-чемпионами.

1816 - Немецкий изобретатель Карл Фридрих Дрейс строит машину, напоминающую современный велосипед.Как только он появился на улицах города, ему дали название «беговая машина», потому что его владелец, отталкиваясь ногами, фактически бегал по земле.

1834 - Парусный экипаж конструкции М. Акуэ прошел испытания в Париже. Этот экипаж имел мачту высотой 12 метров.

1868 — Считается, что в этом году прототип современного мотоцикла создал француз Эрн Мишо.

1871 - Французский изобретатель Луи Перро разрабатывает паровой двигатель для велосипеда.

1874 год - в России построена паровая электростанция колесный трактор... Был использован английский прототип автомобиля Эвелин Портер.

1875 - В Париже состоялась демонстрация первой паровой машины Amadeus Bdley.

1884 - Американец Луи Коупленд строит мотоцикл с паровым двигателем, установленным над передним колесом. Эта конструкция могла разгоняться до 18 км/ч.

1901 - в России построен пассажирский паром Московского велосипедного завода "Дукс".

1902 - Леон Серполле установил мировой рекорд скорости 120 км/ч на одном из своих паровозов.

Через год он установил еще один рекорд — 144 км/ч.

1905 - Американец Ф. Марриотт превысил скорость 200 км на паровой машине

1.2 Пара двигатель

Паровой двигатель. Пар, образующийся при нагревании воды, используется для движения. В некоторых двигателях пар заставляет двигаться поршни в цилиндрах. Это создает возвратно-поступательное движение. Прикрепленный механизм обычно приводит его во вращательное движение. В паровозах (локомотивах) используются поршневые двигатели.Паровые турбины также используются в качестве двигателей, которые непосредственно передают вращение за счет вращения ряда лопастных колес. Паровые турбины приводят в действие генераторы электростанций и морские гребные винты. В любой паровой машине теплота, образующаяся при нагреве воды в паровом котле (бойлере), преобразуется в энергию движения. Тепло может быть получено от сжигания топлива в печи или от ядерного реактора. Первым в истории паровозов был тип насоса, с помощью которого откачивали воду, затоплявшую шахты.Он был изобретен в 1689 году Томасом Савери. В этой очень простой по конструкции машине пар конденсируется в небольшое количество воды, в результате чего создается частичное разрежение, благодаря которому вода отсасывается из вала. В 1712 году Томас Ньюкомен изобрел паровой поршневой насос. В 1860-х гг. Джеймс Уатт усовершенствовал конструкцию Ньюкомена и создал гораздо более эффективные паровые машины. Вскоре их стали использовать на заводах для привода станков. В 1884 г.Английский инженер Чарльз Парсоне (1854-1931) изобрел первую практическую паровую турбину. Его конструкции были настолько эффективны, что вскоре он начал заменять поршневые паровые двигатели на электростанциях. Самым поразительным достижением в области паровых двигателей стало создание микроскопического, полностью закрытого работающего парового двигателя. Японские ученые создали его, используя методы, используемые для создания интегральных схем. Небольшой ток через электрический нагревательный элемент превращает каплю воды в пар, приводящий в движение поршень.Теперь ученым предстоит выяснить, в каких областях это устройство может найти практическое применение.

В сознании большинства людей в эпоху смартфонов паровые машины — это нечто архаичное, вызывающее улыбку. Насыщенные страницы автомобильной истории были очень яркими и без них вообще сложно представить современный транспорт. Как ни скептически относились к закону, а также нефтяные лоббисты из разных стран пытались ограничить разработку автомобиля для пары, сделать это им удалось лишь на время.Ведь паровая машина похожа на сфинкса. Идея автомобиля на пару (т.е. с двигателем внутреннего сгорания) актуальна и сегодня.

В сознании большинства людей в эпоху смартфонов паровые машины — это нечто архаичное, вызывающее улыбку.

Так, в 1865 году в Англии был введен запрет на движение скоростных самоходных машин на паре. Им запрещалось передвигаться по городу со скоростью более 3 км/ч и не выпускать пар, чтобы не пугать лошадей, запряженных в обычные экипажи.Самый серьезный и ощутимый удар по паровозам нанес уже в 1933 г. закон о налоге на большегрузные автомобили... И только в 1934 г., когда были снижены пошлины на ввоз нефтепродуктов, и победа бензиновых и дизельных двигателей над паровыми .

Только в Англии могли позволить себе так изящно и хладнокровно издеваться над прогрессом. В США, Франции и Италии среда энтузиастов-изобретателей буквально разрывалась от идей, а паровая машина приобретала новые очертания и черты. Хотя изобретение англичан и внесло значительный вклад в развитие паровых транспортных средств, законы и предубеждения властей не позволяли им в полной мере участвовать в борьбе с двигателем внутреннего сгорания.Но давайте говорить о том, что все в порядке.

Доисторическая ссылка

История развития паровой машины неразрывно связана с историей создания и усовершенствования паровой машины. Когда в I веке нашей эры Н.С. Цапля Александрийская предложила паре свою идею вращать металлический шар, и его идея была сочтена не более чем забавой. Были ли изобретатели больше озабочены другими идеями, но первым, кто поставил паровой котел на колеса, был монах Фердинанд Вербст.В 1672 году к его «игрушке» тоже относились как к игре. Но следующие сорок лет не прошли даром для истории паровой машины.

проект самоходного экипажа Исаака Ньютона (1680 г.), пожарный аппарат механика Томаса Севери (1698 г.) и атмосферная среда Томаса Ньюкомена (1712 г.) продемонстрировали огромные возможности использования пара для выполнения механической работы.. Первоначально паровые машины откачивали воду из шахт и поднимали грузы, но к середине 18 века таких паровых установок в английских компаниях было уже несколько сотен.

Что такое паровой двигатель? Как пара может двигать колеса? Принцип работы паровой машины прост. Вода нагревается в закрытом паровом баке. Пар подается в закрытый цилиндр и выталкивает поршень. Это поступательное движение передается на вал маховика через промежуточный шатун.

Эта принципиальная схема Эксплуатация парового котла на практике имела значительные недостатки.

Первый выстрел пара вылился в палки, а остывший поршень упал под собственным весом к следующему удару.На практике эта принципиальная схема парового котла имела существенные недостатки. Отсутствие системы регулирования давления пара часто приводило к взрыву котла. Приведение котла в техническое состояние потребовало много времени и топлива. Непрерывная дозаправка и гигантские размеры паровой установки только дополняли список ее недостатков.

Новая машина была предложена Джеймсом Уаттом в 1765 году. Выдавливаемый поршнем пар направлялся в дополнительную конденсационную камеру и избавлял от необходимости постоянно доливать воду в котел.Наконец, в 1784 году он решил проблему перераспределения движения пара, толкая поршень в обоих направлениях. Благодаря созданной им катушке паровоз смог работать без пауз между циклами. Этот принцип тепловой машины двойного действия лег в основу большинства паровых технологий.

Многие умные люди работали над созданием паровых двигателей. Ведь это простой и дешевый способ черпать энергию практически из ничего.

Небольшой экскурс в историю паровых машин

Однако, как бы велики ни были успехи британцев на этом поприще, француз Николя Жозеф Куньо был первым паровым двигателем, поставленным на колеса.

Первый паровой автомобиль Kyunho

Его автомобиль появился на дорогах в 1765 году. Скорость коляски составила рекордные 9,5 км/ч. В нем изобретатель предусмотрел четыре пассажирских сиденья, которые можно было катить по ветру со средней скоростью 3,5 км/ч. Этого успеха изобретателю было мало.

Необходимость останавливаться для дозаправки и разжигания нового костра через каждый километр дороги была не существенным недостатком, а только современным состоянием техники того времени.

Он решил изобрести пушечный тягач. Так родилась трехколесная телега с массивным котлом впереди. Необходимость останавливаться для дозаправки и разжигания нового костра на каждом километре дороги не была существенным недостатком, а лишь была в то время современным состоянием техники.

Еще одна модель Cugno 1770 года весила около полутора тонн. Новый грузовик мог перевозить около двух тонн груза со скоростью 7 км/ч.

Маэстро Куньо больше интересовала идея создания паровой машины высокого давления.Его даже не смущал тот факт, что котел может взорваться. Именно Куюнхо придумал разместить очаг под котлом и взять с собой «огонь». Кроме того, его «автомобиль» по праву можно назвать первым грузовиком. Отставка патрона и череда революций помешали мастеру развить модель в полноценный грузовик.

Самоучка Оливер Эванс и его амфибия

Идея создания паровых машин имела универсальный масштаб. В штатах Северной Америки изобретатель Оливер Эванс создал около пятидесяти паровых установок на основе машины Уатта.Стремясь уменьшить размер завода Джеймса Уатта, он разработал паровые двигатели для мукомольных заводов. Однако всемирную известность Оливер Эванс получил благодаря своей паровой амфибии. В 1789 году его первая машина в США успешно прошла как наземные, так и водные испытания.

На свой автомобиль-амфибию, который можно назвать прообразом вездеходов, Эванс установил паровую машину на давление в десять атмосфер!

Девятиметровый корпус фургона весил примерно 15 тонн.Приведенный в движение паровой двигатель, задние колеса и пропеллер. Между прочим, Оливер Эванс также был сторонником паровой машины высокого давления. На свой автомобиль-амфибию, который можно назвать прообразом вездеходов, Эванс установил машину с давлением пара в десять атмосфер!

Если бы у изобретателей 18-19 века были на руках технологии 21 века, представляете, сколько бы технологий они изобрели!? Какая техника!

20 век и 204 км/ч на паровой машине Stanley

Да! XVIII век дал мощный толчок развитию парового транспорта.Многочисленные и разнообразные конструкции самоходных паровых машин стали все больше и больше ослаблять конный транспорт на дорогах Европы и Америки. В начале 20 века автомобили с паровым двигателем получили значительное распространение и стали известным символом своего времени. Так же как и фотография.

XVIII век дал мощный толчок развитию парового транспорта

Именно свою фотокомпанию продали братья Стэнли, когда в 1897 году решили всерьез заняться производством паровых автомобилей в США.Они построили хорошо продаваемые паромные вагоны. Но этого оказалось недостаточно для реализации амбициозных планов. В конце концов, они были лишь одним из многих производителей одних и тех же автомобилей. Так было до тех пор, пока не сконструировали свою "ракету".

Именно свою фотокомпанию продали братья Стэнли, когда решили серьезно заняться производством паровых автомобилей в США в 1897 году.

Наверняка автомобили Стэнли имели славу надежных автомобилей...Паровой блок располагался сзади и котел отапливался бензиновыми или керосиновыми горелками. Маховик двухцилиндровой паровой машины двойного действия, вращающийся на задней оси посредством цепной передачи. У Stanley Steamer не было случаев взрыва котла. Но им нужен был всплеск.

Конечно, автомобили Stanley имели репутацию надежных автомобилей.

Они произвели фурор на весь мир своей "ракетой". 205,4 км/ч в 1906 году! Так быстро еще никто не ездил! Автомобиль с двигателем внутреннего сгорания побил этот рекорд лишь спустя 5 лет.Паровая фанера Stanley в форме гоночных автомобилей «Ракета» на протяжении многих лет. Но после 1917 года Stanley Steamer испытывал все большую конкуренцию со стороны дешевого Ford T и ушел.

Уникальные паромы Doble Brothers

Это знаменитое семейство сумело оказать достойное сопротивление бензиновым двигателям до начала 1930-х годов. Они не строили рекордные автомобили. Братья очень любили свои паромы. Иначе как еще объяснить изобретенный ими кулер камеры и кнопку зажигания? Их модели не были похожи на маленькие паровозы.

Братья Эбнер и Джон произвели революцию в паровом транспорте.

Братья Эбнер и Джон произвели революцию в паровых перевозках. Его машине не нужно было прогреваться 10-20 минут для движения. Кнопка зажигания перекачивала керосин из карбюратора в камеру сгорания. Туда он попал после зажигания от свечи зажигания. Вода нагревалась за секунды, а через полторы минуты пар набирал необходимое давление, и можно было идти.

Отработавший пар направлялся в охладитель для конденсации и подготовки к последующим циклам.Поэтому для спокойного пробега в 2000 км автомобилям «Доблов» требовалось всего девяносто литров воды в системе и несколько литров керосина. Такую экономию не мог предложить никто! Возможно, именно на автосалоне в Детройте в 1917 году Стэнли познакомился с моделью братьев Добл и начал ограничивать их производство.

Модель

E стала самым роскошным автомобилем второй половины 1920-х годов и последней версией паромного вагона Доблова. Кожаный салон, полированное дерево и кости слона радуют состоятельных владельцев внутри автомобиля.В такой кабине можно было наслаждаться бегом со скоростью до 160 км/ч. С момента зажигания до момента запуска прошло всего 25 секунд. Еще 10 секунд понадобилось 1,2-тонному автомобилю, чтобы разогнаться до 120 км/ч!

Все эти скоростные характеристики заложены в четырехцилиндровом двигателе. Два поршня выталкивались паром высокого давления в 140 атмосфер, а два других направляли охлажденный пар низкого давления в сотовый радиатор. Но в первой половине 1930-х гг.эти красавцы братья Добл больше не производились.

Паровозы

Не следует, однако, забывать, что паровая тяга быстро развила грузовой транспорт... Паровозы в городах аллергичны для снобов. Но товар должен быть доставлен в любую погоду и не только по городу. А междугородние автобусы и военная техника? На маленьких машинах туда не сойдешь.

Грузовой транспорт имеет одно существенное преимущество перед пассажирским транспортом - его габариты.

Грузовой транспорт имеет одно существенное преимущество перед пассажирским транспортом - его габариты. Именно они позволяют размещать мощные силовые установки в любом месте автомобиля. Более того, это только повысит грузоподъемность и проходимость. На то, как будет выглядеть грузовик, не всегда обращают внимание.

Среди пары грузовиков хотелось бы выделить английский Sentinel и советский НАМИ. Конечно, было и много других, таких как Фоден, Фаулер, Йоркшир. Но именно Sentinel и НАМИ оказались самыми стойкими и выпускались до конца 1950-х годов.прошлый век. Они могли работать на любом твердом топливе – угле, дровах, торфе. «Всеядность» этих грузовиков ставила их попарно вне зависимости от цены нефтепродуктов, позволяла использовать их в труднодоступных местах.

Трудоголик-страж с английским акцентом

Два грузовика отличаются не только страной производства. Отличались и правила размещения парогенераторов. Сантинели характеризуются верхним и нижним расположением паровых машин по отношению к котлу.В верхнем положении парогенератор подавал горячий пар непосредственно в моторный отсек, который соединялся системой с мостами через карданные валы... Благодаря нижнему расположению паровой машины, т.е. на шасси, котел нагревал воду и подавали пар к двигателю по трубам, что гарантировало температурные потери.

Сантинеле характеризуются верхним и нижним расположением паровых машин по отношению к котлу.

Характерным для обоих типов было наличие цепной передачи от маховика паровой машины к карданным шарнирам.Это позволило дизайнерам стандартизировать производство Сантинели в соответствии с требованиями заказчика. Для жарких стран, таких как Индия, выпускались паровые машины с нижним, раздельным расположением котла и двигателя. Для стран с холодными зимами - с верхним, комбинированным типом.

Для жарких стран, таких как Индия, выпускались паровые машины с нижним, раздельным расположением котла и двигателя.

В этих грузовиках используются многие проверенные технологии.Золотники и клапаны распределения пара, двигатели одинарного и двойного действия, высокого или низкого давления, с редуктором или без него. Однако это не продлило жизнь английским паровозам. Хотя они выпускались до конца 1950-х годов и даже служили в армии до и во время Второй мировой войны, они все же были громоздкими и чем-то напоминали паровозы. А так как не нашлось заинтересованных в их радикальной модернизации лиц, их судьба была обречена.

Хотя выпускались до конца 1950-х гг.Они были даже громоздкими и чем-то напоминали паровозы 1980-х годов и даже служили в армии до и во время Второй мировой войны.

Кому что, кроме нас - США

Чтобы поднять истерзанную войной экономику Советского Союза, нужно было найти способ не тратить нефтяные ресурсы, хотя бы в труднодоступных местах - на севере страны и в Сибири. Советским инженерам была предоставлена ​​возможность изучить разработанную Сантинелем конструкцию четырехцилиндровой паровой машины прямого действия и разработать собственный «ответ Чемберлену».

В 1930-х годах российские институты и конструкторские бюро неоднократно пытались создать альтернативный грузовик для лесной промышленности.

В 1930-е годы российские институты и конструкторские бюро неоднократно пытались создать альтернативный грузовик для лесной промышленности. Но каждый раз останавливался на этапе тестирования. Используя собственный опыт и возможность изучения перехваченных паромных машин, инженерам удалось убедить руководство страны в необходимости такой паровой машины.Кроме того, бензин был в 24 раза дороже угля. А уж о стоимости дров в тайге и говорить нельзя.

Группа конструкторов под руководством Ю.Шебалина максимально упростила паровую установку. Они объединили четырехцилиндровый двигатель и котел в один блок и разместили его между кузовом и кабиной. Ставим данную установку на шасси ЯАЗ(МАЗ)-200 серии. Работа пара и его конденсация совмещены в замкнутом контуре. Выдача слитков из бункера была автоматической.

Так родился НАМИ-012, фактически в лесной местности. Разумеется, принцип питания бункера твердым топливом и положение паровой машины на тележке были заимствованы из практики газовых электростанций.

Судьба хозяина леса - НАМИ-012

Характеристики парового бытового бортового автомобиля и лесовоза НАМИ-012 были следующие

  • Грузоподъемность - 6 тонн
  • Скорость - 45 км/ч
  • Запас хода без дозаправки 80 км, при возобновлении подачи воды 150 км
  • Крутящий момент на малых скоростях - 240 кгм, что почти в 5 раз превышает показатели базового ЯАЗ-200
  • Котел с естественной циркуляцией создавал давление 25 атмосфер и доводил пар до температуры 420°С
  • Можно было пополнять запас воды прямо из бака через эжекторы
  • Цельнометаллическая кабина не имела капота и на
  • выдвигалась вперед.
  • Скорость регулировалась количеством пара в двигателе рычагом подачи/отсечки.С его помощью баллоны наполнялись на 25/40/75%.
  • Одна передача заднего хода и три педали управления.

Серьезными недостатками паровой машины были расход 400 кг дров на 100 км пути и необходимость утилизировать воду в котле в условиях мороза.

Серьезными недостатками тепловоза были расход 400 кг дров на 100 км пути и необходимость избавления от воды в котле в условиях мороза. Но главный недостаток, который присутствовал у первого образца, — плохая проходимость без нагрузки.Потом выяснилось, что передний мост перегружен кабиной и паровым агрегатом, по сравнению с задним мостом. С этой задачей справились, установив на полноприводный ЯАЗ-214 модернизированную паровую силовую установку. Теперь мощность лесовоза НАМИ-018 увеличена до 125 лошадиных сил.

Однако, не успев распространиться по стране, все парогенераторы были выброшены во второй половине 1950-х годов.прошлый век.

Однако, не успев распространиться по стране, все парогенераторы были выброшены во второй половине 1950-х годов. Впрочем, вместе с газогенераторами. Что касается стоимости переоборудования автомобиля, экономические выгоды и простота использования отнимали много времени и вызывали сомнения по сравнению с бензиновыми и дизельными грузовиками. Тем более, что к этому времени в Советском Союзе уже набирала обороты добыча нефти.

Быстрый и недорогой современный паровоз

Не думайте, что идея паровой машины забыта навсегда.В настоящее время наблюдается значительный рост интереса к двигателям, альтернативным двигателям внутреннего сгорания на бензине и дизельном топливе. Мировые запасы нефти не безграничны. Да и стоимость нефтепродуктов продолжает расти. Конструкторы так старались усовершенствовать двигатель внутреннего сгорания, что их идеи почти достигли предела.

Электромобили, водородные автомобили, газогенераторы и паровые машины снова стали горячими темами. Здравствуй, забытый 19 век!

В настоящее время наблюдается значительный рост интереса к двигателям, альтернативным двигателям внутреннего сгорания на бензине и дизельном топливе.

Британский инженер (опять же Англия!) продемонстрировал новые возможности паровой машины. Он создал свой Inspuration не только для того, чтобы продемонстрировать важность паровых автомобилей. Его идея сделана для рекордов. 274 км/ч – это скорость, с которой разгоняются двенадцать котлов, установленных на 7,6-метровом автомобиле. Всего 40 литров воды достаточно, чтобы сжиженный газ буквально за мгновение поднял температуру пара до 400°С. Только представьте, что потребовалось 103 года истории, чтобы побить рекорд скорости для паровой машины, установленный Rocket!

В современном парогенераторе можно использовать угольную пыль или другое дешевое топливо, напр.мазут, сжиженный газ. Именно поэтому паровые машины всегда были и будут популярны.

Но для экологически безопасного будущего необходимо снова преодолеть сопротивление нефтяных лоббистов.

Паровые двигатели устанавливались и приводились в действие большинством паровых двигателей с начала 19 века до 1950-х годов. Хочу отметить, что принцип работы этих двигателей всегда оставался одним и тем же, несмотря на изменение их конструкции и габаритов.

Анимированная иллюстрация показывает работу паровой машины.


Для производства пара, подаваемого в двигатель, применялись котлы, работающие как на дровах и угле, так и на жидком топливе.

Первая мера

Пар из котла поступает в паровую камеру, из которой через паровой клапан (обозначен синим цветом) поступает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. При перемещении поршня из ВМТ в НМТ колесо делает пол-оборота.

Выпуск

В самом конце пути поршня к НМТ паровой клапан перемещается, выпуская оставшийся пар через выпускное отверстие, расположенное под клапаном. Остаточный пар выходит, создавая звук, характерный для паровых двигателей.

Вторая мера

Одновременно при перемещении клапана остаточного пара открывается вход пара в нижнюю (заднюю) часть цилиндра. Давление, создаваемое паром в цилиндре, заставляет поршень двигаться к ВМТ.За это время колесо делает еще пол-оборота.

Выпуск

В конце пути поршня к ВМТ оставшийся пар выбрасывается через то же выпускное отверстие.

Цикл повторяется заново.

Паровой двигатель имеет так называемый мертвая точка в конце каждого хода, когда клапан переходит от такта расширения к выходу. По этой причине каждая паровая машина имеет два цилиндра, что позволяет запускать двигатель из любого положения.

Изобретение паровых двигателей стало поворотным моментом в истории человечества.Где-то на рубеже 17-18 веков началась замена малоэффективного ручного труда, водяных колес и совершенно новыми и уникальными механизмами - паровыми машинами. Именно благодаря им стала возможной техническая и промышленная революция и весь прогресс человечества.

Но кто изобрел паровой двигатель? Кому человечество обязано этим? И когда это было? Мы постараемся найти ответы на все эти вопросы.

Еще до нашей эры

История паровой машины начинается в первые века н.э.CE Цапля Александрийская описала механизм, который срабатывал только при воздействии пара. Устройство представляло собой сферу с прикрепленными к ней насадками. Пар выбрасывался из сопел по касательной, тем самым заставляя двигатель вращаться. Это было первое паровое устройство.

Создателем паровой машины (точнее турбины) является Таги ад-Диноме (арабский философ, инженер и астроном). Его изобретение стало широко известно в Египте в 16 веке. Механизм был устроен следующим образом: струи пара направлялись прямо на лопастной механизм, а при выпуске дыма лопасти вращались.Нечто подобное предложил итальянский инженер Джованни Бранка в 1629 году. Основным недостатком всех этих изобретений был также большой расход пара, что в свою очередь требовало огромных затрат энергии и не рекомендовалось. Развитие было остановлено, потому что научных и технических знаний человечества в то время было недостаточно. Более того, нужды в подобных изобретениях не было вовсе.

Разработка

До 17 века невозможно было создать паровую машину. Но как только планка уровня человеческого развития перескочила, появились первые образцы и изобретения.Хотя в то время их никто не воспринимал всерьез. Например, в 1663 году английский ученый опубликовал в печати проект своего изобретения, которое он установил в замке Раглан. Его устройство использовалось для подъема воды вверх по стенам башен. Однако, как и все новое и неизведанное, этот проект был воспринят с сомнением и не нашлось спонсоров для его дальнейшего развития.

История паровой машины начинается с изобретения атмосферной паровой машины. В 1681 году французский ученый изобрел устройство для откачки воды из шахт.Первоначально в качестве движущей силы использовался порох, затем его заменил водяной пар. Так появилась пароатмосферная машина. Огромный вклад в ее усовершенствование внесли ученые из Англии Томас Ньюкомен и Томас Северен. Неоценимую помощь оказал и русский изобретатель-самоучка Иван Ползунов.

Неудачная попытка Папена

Далеко не совершенный в то время паровой двигатель привлек особое внимание судостроительной отрасли. Последние сбережения Д. Папен потратил на покупку небольшого корабля, на котором начал устанавливать пароатмосферную машину для подъема воды собственного производства.Механизм действия заключался в том, что, падая с высоты, вода начинала крутить колеса.

Изобретатель провел свои испытания в 1707 году на реке Фульда. Многие стекались посмотреть на чудо: корабль, плывущий по реке без парусов и весел. Однако во время испытаний произошла катастрофа: взорвался двигатель и погибло несколько человек. Власти рассердились на горе-изобретателя и запретили ему заниматься какими-либо работами и проектами. Корабль был конфискован и уничтожен, а сам Папен умер через несколько лет.

Ошибка

Отпариватель Папен имел следующий принцип работы. На дно цилиндра нужно было налить небольшое количество воды. Под самим цилиндром находился котел, который использовался для нагревания жидкости. Когда вода закипела, образовался пар, который расширялся и поднимал поршень. Воздух вытеснялся из пространства над поршнем через специально оборудованный клапан. Когда вода закипела и начал выливаться пар, необходимо было снять котел, закрыть вентиль для удаления воздуха и использовать холодную воду для охлаждения стенок цилиндра.Благодаря таким действиям пар в цилиндре конденсировался, под поршнем создавалось разрежение, а благодаря силе атмосферного давления поршень возвращался на прежнее место. Некоторая полезная работа была сделана во время его движения вниз. Однако КПД паровой машины Папена был отрицательным. Двигатель парохода был чрезвычайно расточительным. А самое главное, он был слишком сложен и неудобен в использовании. Поэтому изобретение Папена с самого начала не имело будущего.

Последователи

Но на этом история паровой машины не закончилась.Следующим, уже гораздо более успешным, чем Папен, был английский ученый Томас Ньюкомен. Он долго изучал труды своих предшественников, акцентируя внимание на слабых местах... и опираясь на лучшее из их работ, в 1712 году создал свой аппарат. Новая паровая машина (на фото) устроена следующим образом: используются вертикальный цилиндр и поршень. Этот Новичок почерпнул из работы Папена. Однако пар производился в другом котле. Вся оболочка крепилась вокруг поршня, что значительно увеличивало герметичность внутри парового цилиндра.Эта машина тоже была пароатмосферной (вода выходила из шахты при атмосферном давлении). Основными недостатками изобретения были его громоздкость и малоэффективность: машина «съедала» огромное количество угля. Но это было гораздо полезнее, чем изобретение Папена. Поэтому его почти пятьдесят лет использовали в подземельях и шахтах. Его использовали для откачки грунтовых вод и для осушения кораблей. он пытался переоборудовать свою машину, чтобы ее можно было использовать для движения. Однако все его попытки не увенчались успехом.

Еще одним ученым, заявившим о себе, был Д. Халл из Англии. В 1736 году он представил миру свое изобретение: пароатмосферную машину, имевшую в качестве движителя роторы. Его разработка оказалась более успешной, чем у Папена. Несколько таких кораблей были освобождены сразу. В основном они использовались для буксировки барж, кораблей и других судов. Однако надежность пароатмосферного двигателя не внушала доверия, и в качестве основного движителя корабли снабдили парусами.

И хотя Халлу повезло больше, чем Папену, его изобретения постепенно теряли свою актуальность и были заброшены. Однако у пароатмосферных машин того времени было много специфических недостатков.

История паровой машины в России

Очередной прорыв произошел в Российской империи. В 1766 году на Барнаульском металлургическом заводе была построена первая паровая машина, подававшая воздух в плавильные печи с помощью специальных дутьевых мехов. Его создателем стал Иван Иванович Ползунов, который за заслуги перед Отечеством даже получил офицерское звание.Изобретатель представил начальству планы и чертежи «пожарной машины», способной приводить в движение меха.

Однако судьба сыграла с Ползуновым злую шутку: через семь лет после принятия его проекта и сборки автомобиля он заболел и умер от износа - всего за неделю до испытаний своего двигателя. Однако его указаний было достаточно, чтобы запустить двигатель.

Итак, 7 августа 1766 года паровоз Ползунова был пущен в ход и загружен. Однако в ноябре того же года он рухнул.Причиной оказались слишком тонкие стенки котла, не предназначенного для загрузки. Более того, изобретатель написал в своей инструкции, что этот котел можно использовать только во время испытаний. Сделать новый котел было бы несложно, так как КПД паровой машины Ползунова был положительным. За 1023 часа работы с его помощью было выплавлено более 14 пудов серебра!

Но, несмотря на это, ремонтировать механизм никто не стал. Паровоз Ползунова пылился на складе более 15 лет, пока индустриальный мир не остановился и не развился.А потом его полностью разобрали. Видимо, на данный момент Россия еще не созрела для паровых двигателей.

Требования времени

Между тем жизнь не стояла на месте. И человечество постоянно думало о создании механизма, который позволял бы не полагаться на капризную природу, а управлять самой судьбой. Всем хотелось поскорее отказаться от паруса. Поэтому вопрос о создании парового механизма постоянно витал в воздухе. В 1753 году в Париже был объявлен конкурс среди ремесленников, ученых и изобретателей.Академия наук объявила награду тому, кто сможет создать механизм, заменяющий силу ветра. Но несмотря на то, что в конкурсе участвовали такие умы, как Л. Эйлер, Д. Бернулли, Кантон де Лакруа и другие, осмысленного предложения никто не внес.

Прошли годы. А промышленная революция охватила все новые и новые страны. Превосходство и лидерство других держав неизменно переходили к Англии. В конце XVIII века именно Великобритания стала создателем крупной промышленности, благодаря чему завоевала звание мирового монополиста в этой отрасли.Вопрос о механическом двигателе с каждым днем ​​становился все более актуальным. И такой двигатель был создан.

Первая в мире паровая машина

1784 год стал поворотным моментом промышленной революции для Англии и всего мира. И ответственным за это был английский механик Джеймс Уатт. Созданная им паровая машина стала самым известным открытием века.

Несколько лет изучал чертежи, конструкцию и принципы работы пароатмосферных машин.И на основании всего этого сделал вывод, что для бесперебойной работы двигателя необходимо уравнять температуры воды в цилиндре и пара, поступающего в механизм. Основным недостатком пароатмосферных машин была постоянная необходимость охлаждения цилиндра водой. Это было дорого и неудобно.

Новая паровая машина устроена иначе. Таким образом, цилиндр закрывался в специальной паровой рубашке. Таким образом, Ватт достиг своего стабильного теплого состояния. Изобретатель создал специальный сосуд, погруженный в холодную воду (конденсатор).Цилиндр соединен с ним трубой. Когда пар выпускался в цилиндре, он по трубе попадал в конденсатор и снова превращался в воду. Работая над улучшением своей машины, Уатт создал вакуум в конденсаторе. Таким образом, весь выходящий из цилиндра пар конденсировался в нем. Благодаря этому нововведению значительно ускорился процесс расширения пара, что в свою очередь позволило извлекать гораздо больше энергии из того же количества пара. Это был венец успеха.

Создатель паровой машины также изменил принцип подачи воздуха.Теперь пар сначала попадал под плунжер, поднимая его, а затем собирался над плунжером, опуская его. Таким образом, оба хода поршня в механизме стали плавными, что раньше было даже невозможно. А расход угля на одну лошадиную силу был в четыре раза меньше, чем в пароатмосферных машинах, соответственно, чего и пытался добиться Джеймс Уатт. Паровоз очень быстро покорил Великобританию, а затем и весь мир.

Шарлотта Дандас

После того, как весь мир был поражен изобретением Джеймса Уатта, паровые двигатели стали широко использоваться.Так в 1802 году в Англии появилось первое судно на пару — бот «Шарлотта Дандас». Его создателем является Уильям Симингтон. Лодка использовалась для буксировки барж по каналу. Роль манипулятора на корабле выполняло гребное колесо, установленное на корме. Лодка впервые успешно прошла испытания: за шесть часов отбуксировала две огромные баржи на 18 миль. В то же время его очень беспокоил ветер в лицо. Но он сделал.

И все же над ним шутили, так как опасались, что из-за сильных волн, образующихся под гребным колесом, будут размыты края канала.Кстати, на испытаниях Шарлотты присутствовал человек, которого сегодня весь мир считает создателем первого парохода.

по всему миру

Английский кораблестроитель с юности мечтал о корабле с паровой машиной. И вот теперь его мечта стала возможной. Ведь изобретение паровых машин дало новый толчок судостроительной отрасли. Вместе с американским посланником Р. Ливингстоном, взявшим на себя материальную сторону дела, Фултон начал проект паровозного корабля. Это было сложное изобретение, основанное на идее системы привода лопастей.Вдоль бортов судна были вытянуты в ряд пластины, имитирующие множество весел. При этом пластины продолжали мешать друг другу и трескались. Сегодня можно смело сказать, что такого же эффекта можно добиться всего тремя-четырьмя пластинами. Но с точки зрения науки и техники того времени это было нереально. Поэтому работникам верфи пришлось гораздо сложнее.

В 1803 году изобретение Фултона было представлено всему миру.Пароход медленно и уверенно плыл по Сене, поражая умы и воображение многих парижских ученых и руководителей. Однако правительство Наполеона отвергло проект, и недовольные корабелы были вынуждены искать счастья в Америке.

Так, в августе 1807 года через Гудзонов залив проплыл первый в мире пароход «Клермонт», в котором принимала участие самая мощная паровая машина (на фото). Тогда многие просто не верили в успех.

Клермонт отправился в свое первое плавание без груза.Никто не хотел путешествовать на борту огнедышащего корабля. Но на обратном пути появился первый пассажир — местный фермер, заплативший за билет шесть долларов. Он стал первым пассажиром в истории пароходства. Фултон был настолько тронут, что дал смельчаку пожизненную бесплатную поездку на все свои изобретения.

ПАРОВОЙ РОТАЦИОННЫЙ ДВИГАТЕЛЬ И АКСИАЛЬНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ

Роторная паровая машина (роторная паровая машина) - уникальная энергетическая машина, разработка производства которой еще недостаточно развита.

С одной стороны, роторные двигатели самых разных конструкций существовали в последней трети девятнадцатого века и даже хорошо работали, включая привод динамо-машины для выработки электроэнергии и питания всех объектов. Но качество и точность изготовления таких паровых машин (паровых машин) были очень примитивными, поэтому они имели низкий КПД и малую мощность. С тех пор маленькие паровозы ушли в прошлое, но вместе с действительно малоэффективными и бесперспективными поршневыми паровыми машинами ушли в прошлое и роторные паровые машины с хорошими перспективами.

Основная причина в том, что на технологическом уровне конца 19 века не было возможности сделать действительно качественный, мощный и долговечный роторный двигатель.
Поэтому из всей номенклатуры паровых машин и паровозов до наших времен благополучно и активно дожили только паровые турбины огромной мощности (от 20 МВт и выше), на долю которых сегодня приходится около 75% производства электроэнергии в нашей стране. . Паровые турбины большой мощности также обеспечивают энергией ядерные реакторы на боевых подводных лодках-ракетоносцах и крупных арктических ледоколах.Но это все огромные машины... Паровые турбины резко теряют весь КПД при уменьшении своих размеров.

…. Поэтому не существует мощных паровых машин и паровых машин мощностью менее 2000 - 1500 кВт (2 - 1,5 МВт), способных эффективно работать на паре, полученном при сжигании дешевого твердого топлива и различных свободно горючих отходов.
Именно в этой ныне пустой области техники (и абсолютно голого, но крайне необходимого товарного предложения в коммерческой нише), в этой рыночной нише маломощных машин паровые роторные двигатели могут и должны занять свое весьма ценное место.А нужны они нам только в нашей стране - десятки и десятки тысяч... Особенно такие малые и средние энергетические машины для автономного производства энергии и автономного электроснабжения нужны малым и средним предприятиям в районах, удаленных от крупных городов, и крупных электростанций: - на малых лесопильных заводах, удаленных шахтах, вахтовых поселках и лесничествах и т. д. и т. п.
… ..

..
Давайте посмотрим на показатели, которые делают роторные локомотивы лучше своих ближайших собратьев - поршневых паровых машин и паровых турбин.
... - 1)
Роторные двигатели являются объемными машинами, как и поршневые двигатели. Эти. они имеют малый расход пара на единицу мощности, так как пар в их рабочие полости подается время от времени и строго дозированными порциями, а не постоянным обильным потоком, как в паровых турбинах. Поэтому роторные паровые машины намного экономичнее паровых турбин на единицу выходной мощности.
- 2) Роторные паровые машины имеют плечо приложения газовых сил (моментное плечо) значительно (в несколько раз) большее, чем поршневые паровые машины.Поэтому мощность, которую они получают, намного выше, чем у поршневых паровых двигателей.
- 3) Роторные паровые машины имеют гораздо более длинный ход поршня, чем поршневые паровые машины, т.е. они способны преобразовывать большую часть внутренней энергии пара в полезную работу.
- 4) Роторные паровые машины могут эффективно работать на насыщенном (влажном) паре, без затруднений допуская конденсацию значительной части пара с переходом ее в воду непосредственно в рабочих частях роторной паровой машины.Это также повышает эффективность паровой электростанции с использованием роторной паровой машины.
- 5 ) Роторные паровые машины работают со скоростью 2-3 тыс. об/мин, что является оптимальной скоростью для выработки электроэнергии, в отличие от поршневых двигателей со слишком низкими оборотами (200-600 об/мин) традиционных паровых машин типа паровозных или со слишком быстроходными турбинами (10-20 тыс. об/мин ).

В то же время технологически роторные паровые машины относительно просты в изготовлении, что делает затраты на их производство относительно низкими.В отличие от паровых турбин, производство которых чрезвычайно дорого.

КРАТКИЙ ОБЗОР ЭТОЙ СТАТЬИ - Роторная паровая машина - паровая машина высокой производительности для преобразования давления пара из теплоты сгорания твердого топлива и горючих отходов в механическую и электрическую энергию.

Автор этой страницы уже получил более 5 патентов на изобретения, касающиеся различных аспектов конструкции роторных паровых машин. А также выпускается ряд малых роторных двигателей мощностью от 3 до 7 кВт.В настоящее время ведется проектирование роторных паровых машин мощностью от 100 до 200 кВт. Однако роторные двигатели
имеют «общий недостаток» - сложную систему уплотнений, которая оказывается слишком сложной, миниатюрной и дорогой в производстве для небольших двигателей.

Параллельно с этим автор сайта разрабатывает аксиальные паропоршневые двигатели с противоположно вращающимися поршнями. Эта система является наиболее энергоэффективной с точки зрения изменения мощности из всех возможных схем применения поршневой системы.
Эти двигатели небольшого размера немного дешевле и проще, чем роторные двигатели, и в них используются самые традиционные и простые уплотнения.

Ниже представлен видеоролик, демонстрирующий использование небольшого аксиально-поршневого оппозитного двигателя с противоположным движением поршня.

В настоящее время выпускается такой аксиально-поршневой оппозитный двигатель мощностью 30 кВт. Ресурс двигателя должен составлять несколько сотен тысяч часов работы, так как обороты паровой машины в 3-4 раза ниже оборотов двигателя внутреннего сгорания, в паре трения "поршень-цилиндр" - подвергается плазменно- ионное азотирование в вакуумной среде, а твердость поверхностей трения составляет 62-64 единицы HRC.Подробную информацию о процессе азотирования поверхностного упрочнения см.


Вот анимация принципа работы такого аксиально-поршневого оппозитного двигателя с противоположно вращающимися поршнями аналогичного расположения.

.

Смотрите также