Жидкость в электромагнитной муфте


Магнитная муфта: принцип работы, устройство, эксплуатация

Ранее мы уже рассказывали о принципе действия центробежных насосов с магнитной муфтой. Сегодня настало время более подробно и детально рассмотреть принцип работы их основного узла - самой магнитной муфты.

Возрастание экологических требований, санитарно-гигиенические нормативы, жесткие действия органов власти в ответ на нарушения законодательства об охране труда и окружающей среды понуждают руководителей предприятий к принятию соответствующих мер.

Магнитная муфта применяется там, где по соображениям безопасности, необходимости сохранения ценного продукта или из-за высоких требований к чистоте жидкости нужно обеспечить повышенный уровень герметичности, который не может дать механическое уплотнение.

Привод на магнитах используется в насосах для химической, нефтяной и газовой промышленности, на пищевых производствах. Магнитные муфты востребованы в фармацевтике, холодильной технике, энергетике, установках очистки сточных вод, многих других сферах.

Последние достижения в сфере производства магнитов и конструкторские изобретения позволили нейтрализовать недостатки техники с магнитным приводом. Высокие показатели надежности придали импульс широкому распространению подобного оборудования.

Что такое магнитная муфта

Магнитная муфта играет роль передаточного механизма в насосах и других агрегатах. Крутящий момент передается с ведущего вала на ведомый бесконтактным способом. Вместо механического зацепления используется сила магнитного поля.

При этом не нужно выводить вал из проточной части на электропривод, что позволяет сделать проточную часть полностью герметичной. Техника работает без утечек, характерных для механических уплотнений валов.

Проточная часть насоса и наружная полумуфта

Преимущества оборудования с магнитной муфтой:

  • Обеспечивается безопасность технического персонала при перекачке химически агрессивных, токсичных, взрывопожароопасных, имеющих резкий запах веществ;
  • Сохраняется чистота перекачиваемого продукта;
  • Отсутствуют шум и вибрации;
  • Предотвращается разрушение валов или других узлов оборудования при ударном торможении;
  • Из-за отсутствия контакта и трения нет износа деталей, снижаются затраты на мониторинг и техобслуживание, муфта прослужит до выхода из строя магнитов.

Магнитную муфту подбирают с учетом действующих нагрузок в приводе, частоты вращения и диаметров валов.

Устройство и принцип действия

Магнитная муфта состоит из двух полумуфт, в каждой из которых стоят постоянные магниты переменной полярности, создающие магнитное поле. Ведущая полумуфта (внешний ротор) сажается на вал электродвигателя, ведомая (внутренний ротор) – на приводной вал оборудования. После запуска электродвигателя вращающееся магнитное поле внешнего ротора приводит в движение внутренний ротор. Валы начинают вращаться с синхронной скоростью при постоянном угле сдвига.

Полумуфты разделены защитным экраном – стаканом, который обычно устанавливают на ведомый вал. Точность изготовления деталей позволяет минимизировать воздушный зазор. Тонкостенный стакан обеспечивает герметичность зазора между полумуфтами, предотвращает утечку перекачиваемого продукта.

При превышении величины крутящего момента магнитная связь разрывается без повреждения или размагничивания муфты, но для запуска нужно вновь синхронизировать полумуфты. Такая особенность позволяет сохранить работоспособность привода при заедании, например из-за разрушения подшипника или попадания в зацепление постороннего предмета. Длительной работы в рассинхронизированном состоянии нужно избегать.

Магниты

Магниты внешнего ротора приклеиваются в пазах, внутреннего – полностью герметичны и защищены от коррозии, контакт с жидкой средой отсутствует.

Уязвимым местом магнитов считается ограничение по рабочей температуре применения и повышенная хрупкость материала. При температуре рабочей среды до +150 °C применяют магниты из неодима, до +350 °C – из самарий-кобальта. Превышение температуры выше положенных значений ведет к повреждению магнитов, снижается крутящий момент муфты.

Конструкция стакана

Стакан изготавливают из устойчивого к коррозии немагнитного материала, способного пропускать магнитное поле. Толщина стенки обычно составляет 1.5 мм. Прочность детали рассчитана с учетом рабочего давления и действующих растяжений. Бесшовный монолитный стакан надежнее состоящего из двух частей.

Рабочее колесо центробежного насоса, совмещённое с ведомой магнитной полумуфтой

В стаканах из нержавеющей стали возникают вихревые токи. В результате теряется мощность и снижается КПД, стакан нагревается. Несвоевременный отвод тепла внутренним охлаждающим потоком приводит к сильному нагреву и вызывает размагничивание, через несколько минут муфта с подшипником разрушаются. При перекачке веществ с большим давлением насыщенных паров, например растворителей, возможно закипание жидкости.

На величину потерь мощности влияют следующие параметры:

  • Удельное электрическое сопротивление стакана
  • Толщина стенок стакана
  • Магнитная сила
  • Линейная скорость муфты

Удельное электрическое сопротивление является константой, зависящей от свойств материала. Магнитная сила также величина постоянная, соответствует размерам магнитов.

Показатель потерь мощности изменяется прямо пропорционально квадрату изменения частоты вращения вала. Например, при увеличении частоты в 2 раза потери мощности возрастут в 4 раза.

С увеличением диаметра муфт потери мощности растут из-за увеличения линейной скорости. На приведенном рисунке потери мощности представляют собой разницу между полной потребляемой и полезной мощностью. При большом диаметре показатель потерь в относительных и абсолютных единицах довольно существенный.

Таким образом, применение стаканов из нержавеющей стали обосновано только в муфтах небольших типоразмеров. В изделиях большого диаметра установка муфт из нержавейки экономически нецелесообразна.

Для минимизации потерь применяют стаканы из материалов с высоким электрическим сопротивлением – керамики, никелевых сплавов хастеллой, полиэфирэфиркетона (PEEK, ПЭЭК). Стаканы из пластика из-за ограниченной прочности пластмасс рассчитаны на более низкое давление и температуру.

Преимущества стаканов из электроизолирующих материалов:

  • Сокращаются эксплуатационные расходы ввиду более низкого энергопотребления, поскольку не надо компенсировать падение мощности;
  • Снижаются капитальные затраты, так как можно уменьшить размер двигателя и всего оборудования;
  • При перекачке рабочей среды с близкими к ее испарению давлением и температурой жидкость не переходит в пар или газ из-за нагрева, а также исчезает угроза повреждения подшипников вследствие работы всухую;
  • При перекачке хладагентов не требуется дополнительное время на охлаждение, как в случае с насосами с мокрым ротором;
  • Устраняется опасность повреждения стакана при полной или частичной работе всухую, так как ввиду отсутствия нагрева не нужен постоянный контакт с жидкостью для отвода тепла;
  • Исчезают ограничения для применения муфт большого типоразмера или с более высокой скоростью вращения, вызванные экономической целесообразностью.

В результате применения материалов с высоким электрическим сопротивлением достигается КПД на уровне оборудования с механическим уплотнением.

Упорные подшипники

Подшипники ведомой полумуфты сделаны из коррозионностойких материалов, чаще всего гиперплотного углерода или карбида кремния. Гиперплотный углерод способен на короткое время заменить смазку при работе в экстремальном режиме. Карбид кремния отличается твердостью и высокой теплопроводностью. При смазке на нижней границе нормальных условий эксплуатации возможности материала ограничены.

Для смазки из рабочей среды отбирается часть потока, которая движется между внешней границей рабочего колеса и корпусом либо устремляется в напорное отверстие подшипникового узла. Разница давлений на промывке и всасывании должна быть достаточной для эффективного отвода тепла потоком жидкости от подшипника.

Конструктивные особенности насосов с магнитной муфтой

Насосы с магнитным приводом имеют гибкую муфту или выпускаются в виде моноблока. Моноблочные агрегаты более компактны.

Оборудование приводится в действие стандартным электродвигателем, при смене рабочего режима обычно может применяться действующий насос с минимальными модификациями. Двигатель отделен от насосной части, поэтому выход из строя подшипников муфты, в отличие от герметичных насосов с мокрым ротором, не ведет к фатальным последствиям.

Последние разработки в сфере насосов с магнитной муфтой позволяют усилить контроль за работой оборудования.

Элементы контроля

Встроенный датчик температуры. Устанавливается на защитном стакане, контролирует тепловые потери.

Датчик сухого хода. Контролирует температуру стакана при стремительном нагреве в результате работы всухую. Применяется при перекачке кипящих или склонных к полимеризации продуктов, а также при отсутствии мониторинга подшипников.

Защитная пленка. Покрывает всю поверхность стакана, отслеживает повреждения стаканов из неметаллических материалов. Дополнительно измеряет температуру на внешней стороне с точностью ±5 °C.

Двойная защитная оболочка. Устанавливает дополнительный барьер на случай повреждения стакана при перекачке высокоопасных или токсичных жидкостей. При повреждении одной из оболочек активизируется сигнал.

Датчик вибрации. Контролирует показатели вибрации насоса.

Сигнализатор уровня жидкости. Отслеживает герметичность оборудования со стороны магнитной муфты.

Рекомендации по выбору, установке и эксплуатации насосов с магнитной муфтой

До 90% поломок насосов являются следствием неправильного подбора или эксплуатации. Часто оборудование выходит из строя в результате кавитации или работы на сухом ходу. Простой производства из-за неисправностей выливается в экономические потери.

Основные задачи мониторинга текущего состояния магнитного привода:

  • Своевременная подача смазки к приводу и подшипникам;
  • Немедленная реакция на ухудшение рабочих характеристик;
  • Контроль за износом или заклиниванием оборудования вследствие кавитации или работы всухую.

Для подбора надежного насоса надо иметь данные о параметрах рабочего давления и температуры, месте установки, способе монтажа.

Работоспособность магнитного привода обеспечивается постоянным контролем за текущим состоянием технологического потока.

Успешная эксплуатация без сбоев и полный расчетный срок службы достигаются при всестороннем учете характеристик перекачиваемых жидкостей. Зачастую эти вопросы представляют сложность даже для экспертов.

Характеристики рабочей среды, учет которых необходим:

  • Удельная теплоемкость и коэффициент изменения давления пара. Тепло, возникающее в результате действия вихревых токов или гидравлических потерь, должно отводиться с потоком жидкости. Тепловой баланс рассчитывается на этапе проектирования при предельных значениях параметров потока.
  • Вязкость. При увеличении вязкости эффективность и производительность насоса с магнитным приводом снижается, потери на трение при перекачке растут. Высокий показатель вязкости для рабочей среды допускается только на ограниченный срок, например при холодном старте. На этот случай рекомендуется устанавливать оборудование с приводом с переменной скоростью.
  • Концентрация растворенного газа. Нежелательный газ содержится в жидкости изначально, появляется при перемешивании или вследствие вихревого движения, вызванного некорректной установкой насоса. Главную проблему представляет стремление газов скапливаться во всасывающей области, тем самым снижается производительность и напор насоса. Даже при малой концентрации газа потери значительны. Выбор модели насоса зависит от количества газа в жидкости.
  • Степень загрязненности. Существуют определенные требования к размеру и концентрации твердых включений в рабочей среде при обязательном условии подачи чистой жидкости к подшипникам. Параметры включений учитываются при изготовлении подшипников и лопастей колеса. Для задержки крупных или намагниченных частиц возможна установка фильтров. Твердые включения представляют потенциальную опасность для герметичности стакана, возможна утечка жидкости в окружающую среду.

Сухой ход допускается только при отсутствии вихревых токов, то есть при использовании стакана из электроизолирующих материалов. Логично в этой ситуации выглядит использование подшипников, способных работать без жидкости, например с роликами из керамики. Эти подшипники выдерживают кратковременную эксплуатацию без смазки, но непригодны для длительной работы на сухом ходу. Резкое охлаждение после перегрева ведет к появлению трещин.

Таким образом, при случайном запуске насоса с магнитной муфтой без жидкости нужно остановить оборудование и дождаться охлаждения подшипников. Подача жидкости сразу после сухого хода недопустима.

Попыткой решения проблемы охлаждения стало применение роликовых подшипников с консистентной смазкой, работающих в закрытой воздушной камере. Подшипник рассчитан на длительный срок службы, поскольку работает в абсолютно чистой среде.

Последствия нарушений работы насоса с магнитной муфтой

Вид проблемы Причина
Системный сбой Падает разница давлений на входе и выходе. Быстрый износ подшипников из-за отсутствия подачи смазки к подшипникам, магнитный привод перегревается.
Слабая подача жидкости к насосу или работа всухую Постепенно повышается температура рабочей среды, возникает мгновенное парообразование. Подшипники быстро изнашиваются и выходят из строя. Появление износа вследствие высоких осевых и радиальных нагрузок.
Отсутствует поток жидкости через насос, разгрузочный клапан закрыт Механический удар по опорным поверхностям подшипников. Кавитация, возможно мгновенное парообразование в зонах низкого давления. Падает разница давлений на входе и выходе с указанными выше последствиями.
Низкое давление на всасывающей линии Аналогично предыдущему пункту
Слабый напор, оборудование работает за пределами рабочей кривой Низкая разница давлений на входе и выходе, неполная подача к магнитному приводу с последующим перегревом и мгновенным парообразованием

Не рекомендуется эксплуатация оборудования при предельном значении нескольких рабочих параметров магнитной муфты одновременно. Перед долговременным простоем из насоса и стакана нужно слить жидкости, склонные к затвердеванию, кристаллизации, полимеризации. В случае необходимости сделать промывку.

Электромагнитная муфта

Шестеренчатые насосы от специалиста WITTE PUMPS/Технологии/Уплотнения вала/Электромагнитная муфта

Насосы с электромагнитным приводом

Электромагнитная муфта представляет собой особую форму уплотнения, не требующая вращающихся уплотнительных поверхностей.  

В насосах с электромагнитным приводом крутящий момент передается с ведущего вала на ведомый бесконтактным способом. Таким образом, вместо механического зацепления используется сила магнитного поля. Посколько крутящий момент передается без проскальзывания, скорость насоса всегда соответствует скорости привода, если не превышен максимальный передаваемый крутящий момент.

Электромагнитная муфта используется, когда речь идет о перекачки токсичных сред. 

Поскольку этот вариант уплотнения не требует технического обслуживания, он часто является альтернативой двойным уплотнениям. 
Кроме того, он идеально подходит для высоких давлений (до 700 бар).

Параметры эксплуатации