Устройство кшм двигателя
Устройство КШМ
КШМ ВАЗ 2110, 2111, 2112
|
Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.
Устройство КШМ можно разделить на две группы: подвижные и неподвижные.
Подвижные детали:поршень, поршневые кольца, поршневые пальцы и шатуны, коленчатый вал, маховик.
Блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали.
Поршневая группа включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает ею через шатун па кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет над поршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала.
Коренные подшипникиДля коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.
Маховик
Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из ВМТ (верхней мертвой точки) и НВТ (нижней мертвой точки).
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.
Маховики отливают из чугуна в виде лиска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.
Форма и конструкция поршня, включая днище поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания.
Устройство шатуна
|
Устройство КШМ автомобиля.
1 - стопорное кольцо, 2 - поршневой палец, 3 - маслосьемные кольца, 4 - компрессионные кольца, 5 - камера сгорания, 6 - днище поршня, 7 — головка поршня: 8 - юбка поршня; 9 - поршень: 10 - форсунка; 11- шатун; 12 - вкладыш; 13 - шайба , 14 - длинный болт; 15 - короткий болт; 16 — крышка шатуна, 17 - втулка шатуна; 18 — номер на шатуне; 19 — метка на крышке шатуна; 20 - шатунный болт.
Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези, которые препятствуют отводу теплоты от днища.
Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума.
Головка поршня состоит из днища и образующих ее стенок, в которых именно канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения обшей жесткости головки се стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней.
Поршневые кольца - элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня.
По назначению кольца подразделяются на:
Компрессионные кольца — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра.
Маслосъемные кольца - обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания.
Изготовляются кольца из специальною легированною чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, и подрезом, маслосъемные, пружинящие с расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосьемные — с дренажными отверстиями и узкой перемычкой, составные предсталяют собой два стальных лиска (осевой и радиальный расширители).
Как поменять поршневые кольца двигателя автомобиля
|
Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя: 1 - дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4— замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 - отверстие в канавке маслосъемного кольца.
Для повышения износостойкости первого компрессионного кольца, работающего и условиях высоких температур и граничного трения, его поверхность покрывают пористым хромом. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180 градусов). Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым. |
Установка поршневого пальца
|
Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел "Устройство шатуна". |
Устройство шатуна
|
Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр, чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).
Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.
Устройство двигателя автомобиля не сложно для обучения, главное изучать материал последовательно и систематизированно.
СОДЕРЖАНИЕ:
1. Устройство КШМ двигателя
1.1 Подвижные детали КШМ
1.2 Неподвижные детали КШМ
2. Неисправности КШМ двигателя
2.1 Звуки неисправностей двигателя (стуки двигателя)
2.2 Признаки и причины неисправностей двигателя автомобиля
3. Капитальный ремонт двигателя автомобиля
Устройство кривошипно-шатунного механизма
Содержание
- Принцип действия кривошипно-шатунного механизма
- Гильза
- Поршень
- Шатун
- Коленчатый вал
- Маховик
Основной задачей двигателей внутреннего сгорания, использующиеся на всевозможной технике, является преобразование энергии, которая выделяется при сжигании определенных веществ, в случае с ДВС – это топливо на основе нефтепродуктов или спиртов и воздуха, необходимого для горения.
Преобразование энергии производится в механическое действие – вращение вала. Далее уже это вращение передается дальше, для выполнения полезного действия.
Однако реализация всего этого процесса не такая уж и простая. Нужно организовать правильно преобразование выделяемой энергии, обеспечить подачу топлива в камеры, где производиться сжигание топливной смеси для выделения энергии, отвод продуктов горения. И это не считая того, что тепло, выделяемое при сгорании нужно куда-то отводить, нужно убрать трение между подвижными элементами. В общем, процесс преобразования энергии сложен.
Поэтому ДВС – устройство довольно сложное, состоящее из значительного количества механизмов, выполняющих определенные функции. Что же касается преобразования энергии, то выполняет его механизм, называющийся кривошипно-шатунным. В целом, все остальные составные части силовой установки лишь обеспечивают условия для преобразования и обеспечивают максимально возможный выход КПД.
Принцип действия кривошипно-шатунного механизма
Основная же задача лежит на этом механизме, ведь он преобразовывает возвратно-поступательное перемещение поршня во вращение коленчатого вала, того вала, от движения которого и производится полезное действие.
Устройство КШМ
Чтобы было более понятно, в двигателе есть цилиндро-поршневая группа, состоящая из гильз и поршней. Сверху гильза закрыта головкой, а внутри ее помещен поршень. Закрытая полость гильзы и является пространством, где производится сгорание топливной смеси.
При сгорании объем горючей смеси значительно возрастает, а поскольку стенки гильзы и головка являются неподвижными, то увеличение объема воздействует на единственный подвижный элемент этой схемы – поршень. То есть поршень воспринимает на себя давление газов, выделенных при сгорании, и от этого смещается вниз. Это и является первой ступенью преобразования – сгорание привело к движению поршня, то есть химический процесс перешел в механический.
И вот далее уже в действие вступает кривошипно-шатунный механизм. Поршень связан с кривошипом вала посредством шатуна. Данное соединение является жестким, но подвижным. Сам поршень закреплен на шатуне посредством пальца, что позволяет легко шатуну менять положение относительно поршня.
Шатун же своей нижней частью охватывает шейку кривошипа, которая имеет цилиндрическую форму. Это позволяет менять угол между поршнем и шатуном, а также шатуном и кривошипом вала, но при этом смещаться шатун вбок не может. Относительно поршня он только меняет угол, а на шейке кривошипа он вращается.
Поскольку соединение жесткое, то расстояние между шейкой кривошипа и самим поршнем не изменяется. Но кривошип имеет П-образную форму, поэтому относительно оси коленвала, на которой размещен этот кривошип, расстояние между поршнем и самим валом меняется.
За счет применения кривошипов и удалось организовать преобразование перемещения поршня во вращение вала.
Но это схема взаимодействия только цилиндро-поршневой группы с кривошипно-шатунным механизмом.
На деле же все значительно сложнее, ведь имеются взаимодействия между элементами этих составляющих, причем механические, а это значит, что в местах контакта этих элементов будет возникать трение, которое нужно по максимуму снизить. Также следует учитывать, что один кривошип неспособен взаимодействовать с большим количеством шатунов, а ведь двигатели создаются и с большим количеством цилиндров – до 16. При этом нужно же и обеспечить передачу вращательного движения дальше. Поэтому рассмотрим, из чего состоит цилиндро-поршневая группа (ЦПГ) и кривошипно-шатунный механизм (КШМ).
Начнем с ЦПГ. Основными в ней являются гильзы и поршни. Сюда же входят и кольца с пальцами.
Гильза
Съёмная гильза
Гильзы существуют двух типов – сделанные непосредственно в блоке и являющиеся их частью, и съемные. Что касается выполненных в блоке, то представляют они собой цилиндрические углубления в нем нужной высоты и диаметра.
Съемные же имеют тоже цилиндрическую форму, но с торцов они открыты. Зачастую для надежной посадки в свое посадочное место в блоке, в верхней части ее имеется небольшой отлив, обеспечивающий это. В нижней же части для плотности используются резиновые кольца, установленные в проточные канавки на гильзе.
Внутренняя поверхность гильзы называется зеркалом, потому что она имеет высокую степень обработки, чтобы обеспечить минимально возможное трение между поршнем и зеркалом.
В двухтактных двигателях в гильзе проделываются на определенном уровне несколько отверстий, которые называются окнами. В классической схеме ДВС используется три окна – для впуска, выпуска и перепуска топливной смеси и отработанных продуктов. В оппозитных же установках типа ОРОС, которые тоже являются двухтактными, надобности в перепускном окне нет.
Поршень
Поршень принимает на себя энергию, выделяемую при сгорании, и за счет своего перемещения преобразовывает ее в механическое действие. Состоит он из днища, юбки и бобышек для установки пальца.
Устройство поршня
Именно днищем поршень и воспринимает энергию. Поверхность днища в бензиновых моторах изначально была ровной, позже на ней стали делать углубления для клапанов, предотвращающих столкновение последних с поршнями.
В дизельных же моторах, где смесеобразование происходит непосредственно в цилиндре, и составляющие смеси туда подаются по отдельности, в днищах поршня выполнена камера сгорания – углубления особой формы, обеспечивающие более лучшее смешивание компонентов смеси.
Отличие дизельного двигателя от бензинового
В инжекторных бензиновых двигателях тоже стали применять камеры сгорания, поскольку в них тоже составные части смеси подаются по отдельности.
Юбка является лишь его направляющей в гильзе. При этом нижняя часть ее имеет особую форму, чтобы исключить возможность соприкосновения юбки с шатуном.
Чтобы исключить просачивание продуктов горения в подпоршневое пространство используются поршневые кольца. Они подразделяются на компрессионные и маслосъемные.
В задачу компрессионных входит исключение появления зазора между поршнем и зеркалом, тем самым сохраняется давление в надпоршневом пространстве, которое тоже участвует в процессе.
Если бы компрессионных колец не было, трение между разными металлами, из которых изготавливаются поршень и гильза было бы очень высоким, при этом износ поршня происходил бы очень быстро.
В двухтактных двигателях маслосъемные кольца не применяются, поскольку смазка зеркала производиться маслом, которое добавляется в топливо.
В четырехтактных смазка производится отдельной системой, поэтому чтобы исключить перерасход масла используются маслосъемные кольца, снимающие излишки его с зеркала, и сбрасывая в поддон. Все кольца размещаются в канавках, проделанных в поршне.
Бобышки – отверстия в поршне, куда вставляется палец. Имеют отливы с внутренней части поршня для увеличения жесткости конструкции.
Палец представляет собой трубку значительной толщины с высокоточной обработкой внешней поверхности. Часто, чтобы палец не вышел за пределы поршня во время работы и не повредил зеркало гильзы, он стопориться кольцами, размещающимися в канавках, проделанных в бобышках.
Это конструкция ЦПГ. Теперь рассмотрим устройство кривошипно-шатунного механизма.
Шатун
Итак, состоит он из шатуна, коленчатого вала, посадочных мест этого вала в блоке и крышек крепления, вкладышей, втулки, полуколец.
Шатун – это стержень с отверстием в верхней части под поршневой палец. Нижняя часть его сделана в виде полукольца, которым он садится на шейку кривошипа, вокруг шейки он фиксируется крышкой, внутренняя поверхность ее тоже выполнена в виде полукольца, вместе с шатуном они и формируют жесткое, но подвижное соединение с шейкой – шатун может вращаться вокруг ее. Соединяется шатун со своей крышкой посредством болтовых соединений.
Чтобы снизить трение между пальцем и отверстием шатуна применяется медная или латунная втулка.
По всей длине внутри шатун имеет отверстие, через которое масло подается для смазки соединения шатуна и пальца.
Коленчатый вал
Перейдем к коленчатому валу. Он имеет достаточно сложную форму. Осью его выступают коренные шейки, посредством которых он соединен с блоком цилиндров. Для обеспечения жесткого соединения, но опять же подвижного, в блоке посадочные места вала выполнены в виде полуколец, второй частью этих полуколец выступают крышки, которыми вал поджимается к блоку. Крышки к с блоком соединены болтами.
Коленвал 4-х цилиндрового двигателя
Коренные шейки вала соединены с щеками, которые являются одной из составных частей кривошипа. В верхней части этих щек располагается шатунная шейка.
Количество коренных и шатунных шеек зависит от количества цилиндров, а также их компоновки. В рядных и V-образных двигателях на вал передаются очень большие нагрузки, поэтому должно быть обеспечено крепление вала к блоку, способное правильно распределять эту нагрузку.
Для этого на один кривошип вала должно приходиться две коренные шейки. Но поскольку кривошип размещен между двух шеек, то одна из них будет играть роль опорной и для другого кривошипа. Из этого следует, что у рядного 4-цилиндрового двигателя на валу имеется 4 кривошипа и 5 коренных шеек.
У V-образных двигателей ситуация несколько иная. В них цилиндры расположены в два ряда под определенным углом. Поэтому один кривошип взаимодействует с двумя шатунами. Поэтому у 8-цилиндрового двигателя используется только 4 кривошипа, и опять же 5 коренных шеек.
Уменьшение трения между шатунами и шейками, а также блоком с коренными шейками достигается благодаря использованию вкладышей – подшипников трения, которые помещаются между шейкой и шатуном или блоком с крышкой.
Смазка шеек вала производится под давлением. Для подачи масла применяются каналы, проделанные в шатунных и коренных шейках, их крышках, а также вкладышах.
В процессе работы возникают силы, которые пытаются сместить коленчатый вал в продольном направлении. Чтобы исключить это используются опорные полукольца.
В дизельных двигателях для компенсации нагрузок используются противовесы, которые прикрепляются к щекам кривошипов.
Маховик
С одной из сторон вала сделан фланец, к которому прикрепляется маховик, выполняющий несколько функций одновременно. Именно от маховика передается вращение. Он имеет значительный вес и габариты, что облегчает вращение коленчатому валу после того, как маховик раскрутится. Чтобы запустить двигатель нужно создать значительное усилие, поэтому по окружности на маховик нанесены зубья, которые называются венцом маховика. Посредством этого венца стартер раскручивает коленчатый вал при запуске силовой установки. Именно к маховику присоединяются механизмы, которые и используют вращение вала на выполнение полезного действия. У автомобиля это трансмиссия, обеспечивающая передачу вращения на колёса.
Чтобы исключить осевые биения, коленчатый вал и маховик должны быть хорошо отбалансированы.
Другой конец коленчатого вала, противоположный фланцу маховика используется зачастую для привода остальных механизмом и систем мотора: к примеру, там может размещаться шестерня привода масляного насоса, посадочное место для приводного шкива.
Это основная схема коленчатого вала. Особо нового пока ничего не придумано. Все новые разработки направлены пока только на снижение потерь мощности в результате трения между элементами ЦПГ и КШМ.
Также стараются снизить нагрузку на коленчатый вал путем изменения углов положения кривошипов относительно друг друга, но особо значительных результатов пока нет.
Как работает коленчатый вал - Все подробности
При сгорании топлива поршень направляется прямо вниз по цилиндру, задача коленчатого вала - преобразовать это прямолинейное движение во вращение - в основном, качаясь и толкая поршень обратно вверх по цилиндру.
Терминология коленчатого вала довольно специализированная, поэтому начнем с наименования нескольких деталей. А журнал часть вала, которая вращается внутри подшипника. Как видно выше, на коленчатом валу есть два типа шейки - шейки коренных подшипников образуют ось вращения коленчатого вала, а Шатунные шейки закреплены на концах шатунов, которые подходят к поршням.
Для большей путаницы шатунные шейки сокращенно обозначаются шатунными шейками и также обычно называются шатунные шейки , или журналы с большим концом . Шатунные шейки соединены с коренными шейками полотна .
Расстояние между центром коренной шейки и центром шейки коленчатого вала называется радиус кривошипа , также называемый рукоятка . Это измерение определяет диапазон хода поршня при вращении коленчатого вала — это расстояние от верха до низа известно как ход . Ход поршня будет в два раза больше радиуса кривошипа.
Задний конец коленчатого вала выходит за пределы картера и заканчивается Фланец маховика . Этот прецизионно обработанный фланец крепится болтами к маховик , чья большая масса помогает сгладить пульсацию поршней, срабатывающих в разное время. Через маховик вращение пробивается, через трансмиссию и бортовую передачу к колесам. В автомате коленчатый вал крепится болтами. зубчатый венец , который несет гидротрансформатор, передавая привод в автоматическую коробку передач. По сути, это выходная мощность двигателя, и мощность передается туда, где она необходима: к гребным винтам лодок и самолетов, индукционным катушкам генераторов и к опорным колесам транспортных средств.
Передний конец коленчатого вала, иногда называемый носовой частью, представляет собой вал, выходящий за пределы картера. Этот вал будет соединен с зубчатой шестерней, которая приводит в движение клапанный механизм через зубчатый ремень или цепь [или, в высокотехнологичных приложениях, с зубчатыми передачами], и со шкивом, который передает мощность через приводной ремень на аксессуары, такие как генератор переменного тока и водяной насос. .
Детали коленчатого вала
Основные журналы
шейки коренных подшипников , или просто коренные шейки зажаты в блоке двигателя и вокруг этих шеек двигатель вращается. Все шейки коленчатого вала будут идеально гладкими и круглыми и часто закалены. Коренные шейки закреплены в седлах, в которых сменный вкладыш подшипника будет сидеть. Подшипник мягче шейки, его можно заменять по мере износа, он предназначен для поглощения небольшого количества загрязняющих веществ, если таковые имеются, чтобы не повредить коленчатый вал. А крышка коренного подшипника затем прикручивается к цапфе и затягивается с точным крутящим моментом.
[Схема коренных шеек с подшипниками и отверстиями]
Шейки работают на масляной пленке, которая нагнетается в пространство между шейкой и подшипником через отверстие в седле коленчатого вала и соответствующее отверстие во вкладыше подшипника. При правильном давлении масла и подаче масла шейка и подшипник не должны соприкасаться.
Шатунные шейки
Шатунные шейки смещены от оси вращения и прикреплены к большие концы шатунов поршней. Как ни странно, их также обычно называют шатунные шейки или шатунные шейки . Подача масла под давлением осуществляется через наклонный масляный канал, просверленный из главной шейки.
В некоторых шатунах просверлены масляные каналы, позволяющие распылять масло на стенку цилиндра. В этом случае подшипники скольжения шатуна будут иметь канавку для подачи масла в шатун.
Смазка коленчатого вала
Контакт металла с металлом является врагом эффективного двигателя, поэтому коренные шейки и шатунные шейки движутся по масляной пленке, которая остается на поверхности подшипника.
Подача масла в подшипник коренной шейки проста: масляные каналы от блока цилиндров ведут к каждой опоре коленчатого вала, а соответствующее отверстие в вкладыше подшипника позволяет этому маслу достигать шейки.
Подшипники скольжения шатуна требуют такой же смазки, но они вращаются вокруг коленчатого вала со смещением. Для подачи масла к этим подшипникам внутри коленчатого вала проходят масляные каналы - через коренную шейку, по диагонали через перемычку и наружу через отверстия в шатунных шейках. Канавка в коренном шатунном подшипнике позволяет маслу постоянно нагнетаться по каналу к шатунным шейкам, чему способствует отбрасывание наружу под действием центробежной силы вращающегося коленчатого вала.
Зазоры между шейками и подшипниками являются основным источником давления масла в двигателе. Если зазоры слишком большие, то масло вытекает свободно, и давление не поддерживается. Слишком малые зазоры приведут к высокому давлению масла и риску контакта металла с металлом. Поэтому важно, чтобы зазор между подшипниками и шейками измерялся при восстановлении двигателя.
Противовесы
Коленчатый вал подвергается сильным вращательным усилиям, а масса шатуна и поршня, движущиеся вверх и вниз, создают значительную силу. Противовесы отлиты как часть коленчатого вала, чтобы уравновесить эти силы. Эти противовесы обеспечивают более плавную работу двигателя и более высокие обороты.
Коленчатый вал будет отбалансирован на заводе. В этом процессе маховик крепится, и вся сборка вращается на машине, которая измеряет, где она разбалансирована. Балансировочные отверстия просверлены в противовесах для уменьшения веса. Если необходимо добавить вес, просверливается отверстие, а затем заполняется тяжелым металлом или меллори. Это повторяется до тех пор, пока коленчатый вал не будет отбалансирован.
Упорные шайбы коленчатого вала
В какой-то момент по его длине будут установлены две или более упорных шайб, чтобы предотвратить продольное перемещение коленчатого вала. На изображенном коленчатом валу с обеих сторон центральной шейки установлены упорные шайбы. Эти упорные шайбы располагаются между обработанными поверхностями в перемычке и седлом коленчатого вала, сохраняя указанный небольшой зазор и сводя к минимуму боковое перемещение, доступное коленчатому валу. Расстояние, на которое коленчатый вал может перемещаться из конца в конец, называется его осевым люфтом, и допустимый диапазон будет указан в руководствах по обслуживанию.
В некоторых двигателях эти упорные шайбы являются частью коренных подшипников, в других, как правило, более старых типов, используются отдельные шайбы.
Основные сальники
Оба конца коленчатого вала выходят за пределы картера, поэтому необходимо предусмотреть какой-либо метод предотвращения утечки масла через эти отверстия. Это работа двух основных сальников, одного спереди и одного сзади.
задний главный сальник устанавливается между задней коренной шейкой и маховиком. Обычно это манжетное уплотнение из синтетического каучука. Уплотнение запрессовано в углубление между блоком двигателя и масляным поддоном. Уплотнение имеет фигурную кромку, которая плотно прилегает к коленчатому валу с помощью пружины, называемой стягивающей пружиной.
Вышедший из строя сальник представляет собой серьезную проблему, поскольку он примыкает к коренным шейкам, которые получают и нуждаются в хорошей подаче масла под давлением. В сочетании с пробуксовкой коленчатого вала это приводит к быстрой потере моторного масла через любое нарушение сальника.
Сальник передний похож на задний, хотя его выход из строя менее катастрофичен и доступ к нему легче. Передний сальник будет за шкивами и зубчатым колесом.
Сальник сам по себе является дешевой деталью, но доступ к нему требует больших усилий по снятию коробки передач, сцепления, маховика и, возможно, коленчатого вала. Поэтому рекомендуется заменять сальники каждый раз, когда двигатель разобран и детали доступны.
Компоновки коленчатого вала
Основной коленчатый вал, показанный выше, взят от рядного 4-цилиндрового двигателя. Другие конструкции коленчатого вала будут зависеть от компоновки двигателя. Более подробно эта тема раскрыта в статье о компоновке двигателя. Но следует отметить, что в V-образных и W-образных двигателях два шатуна могут иметь одну шатунную шейку. Некоторые типичные компоновки коленчатого вала показаны ниже.
коленчатый вал V6
Коленчатый вал V6 несколько специфичен, потому что он требует разделения шатунных шеек для поддержания равномерного интервала зажигания. Это требует разделения или расширения шатунных шеек, что известно как шплинт или раздельный журнал дизайн.
Неисправности
Коленчатый вал, будучи очень прочным, является надежным компонентом, и отказы коленчатого вала случаются редко, если только двигатель не работает в экстремальных условиях.
Изношенные журналы
Без достаточного давления масла шейки коленчатого вала будут соприкасаться с поверхностями подшипников, постепенно увеличивая зазор и ухудшая давление масла. В крайних случаях это может привести к разрушению подшипников и серьезному повреждению двигателя. Если цапфы изношены до предельного срока службы или перестали быть идеально круглыми, их необходимо отшлифовать, как описано ниже.
Усталость
Постоянные нагрузки на коленчатый вал могут привести к усталостным изломам, обычно возникающим на галтели, где шейки соединяются со стенкой. Гладкий радиус этого скругления имеет решающее значение, чтобы избежать слабых мест, ведущих к усталостным трещинам. Коленчатый вал можно осмотреть на наличие трещин с помощью магнитофлюсовая .
Модификации и обновления
Шлифовка коленчатого вала
Журналы изнашиваются со временем. Они могут иметь шероховатую поверхность, стать некруглыми или сужающимися. В этих случаях их поверхность можно восстановить в процессе, называемом шлифованием коленчатого вала. Когда коленчатый вал шлифуется, его шейки уменьшаются в диаметре, поэтому необходимо будет установить более крупные и толстые подшипники.
Коленчатые валы
Объем цилиндра можно увеличить за счет увеличения хода поршня. Ход двигателя определяется радиусом кривошипа, являющимся расстоянием шатунных шеек от коренных шеек. Коленчатый вал с большим радиусом кривошипа будет производить более длинный ход и больший объем цилиндра - это известно как коленчатый вал с ударником. Более короткие шатуны потребуются при установке шатунов. В противном случае поршни могут перемещаться в цилиндре слишком высоко, вызывая неприемлемо более высокое сжатие или удары о крышу цилиндра.
Коленчатые валы Stroker для часто модифицируемых двигателей продаются в комплекте с более короткими шатунами и поршнями. Строкерный комплект для 1,8-литрового двигателя Mazda MX5 Miata может преобразовать его в 2-литровый двигатель по цене около 5500 долларов.
Офсетное шлифование
Альтернативой установке коленчатого вала с подвижным механизмом является шлифовка шатунных шеек до меньшего размера со смещением, что приводит к смещению центра шейки от осевой линии коленчатого вала. Это показано выше.
Видно, что за счет перемещения центра шатунной шейки радиус кривошипа увеличился, что привело к увеличению хода. Это специальная обработка, и увеличение хода, которое может быть достигнуто, будет зависеть от толщины шеек.
Как изготавливается коленчатый вал
В большинстве промышленных двигателей используется чугунный коленчатый вал, который изготавливается путем заливки расплавленного чугуна в форму. Кованые коленчатые валы используются в некоторых высокопроизводительных двигателях. Кованый коленчатый вал изготавливается путем нагревания стального блока до красна, а затем с использованием чрезвычайно высокого давления для придания ему формы.
После ковки или литья коленчатого вала его шейки и опорные поверхности идеально гладкие. Пробуриваются нефтяные каналы или масляные каналы. Серийные двигатели, как правило, оставляют перемычки с их первоначальной черновой отделкой отливки, но двигатели с высокими характеристиками подвергают механической обработке каждую часть коленчатого вала, чтобы уменьшить масляное сопротивление.
Шейки должны быть тверже, чем их подшипники, чтобы обеспечить износ сменных подшипников, а не коленчатого вала, который должен сохраняться в течение всего срока службы двигателя. Производственный процесс будет включать закалку этих областей посредством азотирования или термической обработки.
Чрезвычайно высокопроизводительные коленчатые валы, изготовленные по индивидуальному заказу, изготавливаются из блока твердого материала, в результате чего получается цельный коленчатый вал. Изготовление коленчатого вала в единственном экземпляре с помощью этого процесса будет стоить как минимум около 3000 долларов, поэтому он зарезервирован для гоночных соревнований и ситуаций восстановления.
Станок для шлифовки коленчатых валов с ЧПУ | Шлифовальные станки для коленчатых валов
Шлифовальные станки
Станки с ЧПУ, ручные станки, станки Robbi
Наши станки для шлифования коленчатых валов от Robbi используются для шлифования шеек и шатунных шеек, чтобы удалить материал и восстановить эту жизненно важную часть двигателя и дорогостоящий узел. Шлифовка коленчатого вала, обычно выполняемая при восстановлении двигателя, также улучшает характеристики двигателя.
В каждом высокофункциональном двигателе есть искусно изготовленный коленчатый вал. Через шатуны коленчатый вал передает мощность от движения поршня с поступательного на вращательное. Эта задействуемая мощность используется в большинстве обычных автомобилей, дизельных судовых двигателях, двигателях внутреннего сгорания локомотивов, больших компрессорах и другом тяжелом оборудовании.
Наши шлифовальные станки для коленчатых валов подходят как для единичных, так и для производственных партий.
Робби Шлифовальные станки для коленчатых валов
Robbi предлагает линейку шлифовальных станков для коленчатых валов, в которую входит промышленная линейка для тяжелых условий эксплуатации. Эти станки предназначены для высокоточных и эффективных операций с использованием рабочих головок с 4-сторонними поперечными салазками и усовершенствованной системой блокировки для быстрого центрирования коленчатого вала.
Обладая превосходной точностью и надежностью в течение всего срока службы, эти монолитные станки из чугуна также предлагают различные настраиваемые параметры, чтобы станок работал наилучшим образом в соответствии с вашими потребностями.
- Шлифовальная головка: Шлифовальная головка покрыта антифрикционным материалом и снабжена регулируемыми подшипниками, обеспечивающими свободное перемещение и минимизирующим износ станка
- Гидравлические элементы управления: Увеличьте скорость настройки и шлифования с помощью быстрой гидравлической шлифовальной головки и стола.
- Рабочие головки: Всего с двумя ключами для всех операций смещения, центрирования и зажима индексированные патроны легко меняются с патронов на центры и вращаются на 360 градусов.
Стандартная серия станков для шлифовки коленчатых валов
Рекс 1200
Рекс 1500
Рекс 1800
Рекс 2200
Ecotech Machine Tool предлагает четыре стандартных станка для шлифования коленчатых валов.
Промышленная линия станков для шлифовки коленчатых валов
Рекс 2700
Рекс 3100
Рекс 4000
ЧПУ
Рекс 6000
Мы также предлагаем четыре станка промышленной линии с опцией ЧПУ в модели станка Rex 400.
Кино
Общая информация
О компании Robbi Group
Robbi — итальянский производитель промышленных машин с 1936 года. Robbi использует материалы и высококачественные компоненты для обеспечения максимальной точности. Большинство их механических компонентов создаются в их механическом цехе.
Миссия их компании заключается в разработке и производстве прецизионных станков, технологически продвинутых, надежных, безопасных, простых в использовании и «изготавливаемых на заказ» для каждого клиента.
Сравнительная техническая таблица модели машины
Модель | Расстояние между центрами | Высота центров над столом | |
---|---|---|---|
Rex 1200 | 1230 мм | 220mm | |
Rex 1500 | 1550mm | 250mm | |
Rex 1800 | 1800mm | 300mm | |
REX 1800 RM | 1800 мм | 350 мм | |
REX 2200 L | 300 Мм. | 300mm | |
Rex 2200 RM | 2300mm | 350mm | |
Rex 3100 | 32000mm | 400mm | |
REX 4000 CNC | 4200MM | 650MM | |
8 | |||
9000 2 | 6000 мм | 750 мм |
Видео галерея - Шлифовальные машины в действии
999. Дополнительные машины.
Рекс 3100
Увеличить
Рабочая головка для шлифовки коленчатых валов Rex
Увеличить
Очень большие направляющие
Увеличить
Техническая документация по машине
REX
Гидравлические шлифовальные станки для коленчатых валов
Скачать
Ознакомьтесь с другими нашими машинами
-
Вальцешлифовальные станки Robbi
-
Круглошлифовальные станки Robbi — ЧПУ, ПЛК и.
..
-
Круглошлифовальные станки SMTW — ручные
-
Шлифовальные станки Robbi для коленчатых валов
-
Плоскошлифовальные станки Alpa
-
Внутренние шлифовальные станки Robbi (ID) — ЧПУ и ПЛК
-
Вертикальные вращающиеся шлифовальные машины
-
Внутренние шлифовальные машины — ручные
-
Токарный центр
-
Вертикальный обрабатывающий центр
-
Шлифовальный станок со скользящим зазором
-
Круглошлифовальный станок с поперечно-шлифовальной головкой.
Learn more