Четырехтактный двигатель без клапанов но вращается гильза


Бесклапанные ДВС с подвижными гильзами — Русский Топ

Как известно некоторым из интересующихся устройством двигателей внутреннего сгорания товарищей, в двухтактных двигателях обычно нет никаких клапанов — впуск рабочей смеси и выпуск отработанных газов переключается непосредственно движущимся поршнем, перекрывающим окна, сделанные в гильзе цилиндра.

К сожалению, в 4-тактном моторе так сделать не получается — а хочется. В процессе этого хотения сначала появилась схема четырехтакного мотора, в котором в одном цилиндре движутся два поршня, причем движутся в разных фазах — один поршень осуществляет открытие окон для впуска и продувки, а второй — для выпуска отработанных газов. Однако затем хитрые немцы из Даймлер-Бенца придумали схему 4-тактного мотора с подвижной гильзой цилиндра, позволяющую обойтись одним поршнем.

Особенно забавно, что движущей силой всей этой суеты являлась шумность тогдашних ДВС. Причем в те времена механизмы газораспределения с тарельчатыми клапанами были настолько шумными, что своим стуком и лязгом перекрывали шум выхлопа. И никому в то время еще не было известно, что причина шума скрывается в кулачках распредвала. В дальнейшем, найдя оптимальные формы кулачков с малыми скоростями посадки клапанов на седла — меньше 1 м/сек., удалось добиться приемлемого уровня шума в клапанном механизме газораспределения. А пока этого не было, гильзовое газораспределение представляло большой интерес с точки зрения снижения шумности.

Первая, еще двойная возвратно-поступательная гильза, была разработана инженерами Даймлер-Бенца, а реализована в серийных моторах она была американцем Чарльзом Найтом (Knight — была когда-то такая марка автомобилей).

В двигателе Найта использовались две концентричные возвратно-поступательно движущиеся гильзы. Они приводились в действие от промежуточного вала, вращающегося со скоростью вдвое меньшей, чем коленчатый вал. Этот механизм очень хорошо работал в двигателях с относительно небольшой мощностью, и широко использовался на дорогих комфортабельных автомобилях, где ценились бесшумность и удобства пассажиров.

Но при попытках получить высокую литровую мощность двигатели с двойной гильзой из-за масляного голодания развитых поверхностей трения становились причиной выхода из строя двигателя, и поэтому от них довольно быстро отказались.

Проблему надежности решила конструкция, запатентованная американцами Бертом и Мак-Колумом. В этой системе уже применялась всего одна гильза, зато с комбинированным вращательным и возвратно-поступательным движением. Такое движение полностью решало проблему смазки, так как невозможно найти более идеального движения для распространения и механического распределения смазки между двумя трущимися поверхностями.

Автомобили с подобными двигателями имели значительный коммерческий успех, а в начале 1914 года фирма «Агрилл» представила на конкурс двигателей для военной авиации построенный по такой схеме шестицилиндровый рядный двигатель с гильзовым газораспределением. Двигатель показал хорошие результаты, но перед окончанием испытаний у него сломался коленвал. Эта случайность привела к тому, что двигатели с гильзовым газораспределением не стали широко распространены в авиации. Хотя тому были все предпосылки.

Спустя несколько лет в Англии работами по двигателям с гильзовым газораспределением занялся выдающийся инженер, выпускник Кембриджа Sir Harry R. Ricardo. Он поставил работу по доводке этой схемы на научную основу — и получил ряд весьма неожиданных результатов. Результаты этих исследовательских работ трудно переоценить даже в наше время. Например, в дизельных версиях двигателей Рикардо удалось довести расход топлива до 154 г/л.с. в час, что и в настоящее время, спустя почти сто лет, является если и не рекордными, то весьма достойными показателями. А если посмотреть, на какой конструкции и с каким топливом это было получено — то результаты просто шокируют.

Первоначально, для проведения испытаний в 1921-22 г.г. в авиационном центре фирмы «Ройал» были спроектирован и построены два двигателя: один классический 4-тактный четырехклапанный двигатель (да-да — 4 клапана на цилиндр умели уже тогда), и другой — довольно прочный одноцилиндровый одногильзовый 4-тактный двигатель. Оба двигателя имели идентичную геометрию — диаметр цилиндра 140 мм и ход поршня 178 мм. Вот тут видны ключевые особенности этого мотора:

Как видите, кривошип, вращающийся в два раза медленнее коленчатого вала, при помощи пальца со сферической втулкой приводит гильзу в своеобразное «орбитальное» движение — он двигает гильзу вверх-вниз и одновременно поворачивает ее влево-вправо.

При толщине гильзы 3.18 мм двигатель развивал 1300 об/мин. Двигатель был снабжен тремя впускными и двумя выпускными окнами:

Понятно, что Рикардо опирался на уже неплохо доведенный американцами Бертом и Мак-Колумом мотор — но и сам выполнил довольно разумные оптимизации конструкции.

Для более точного сравнения конструкций полная проходная площадь как впускных, так и выпускных окон равнялась по площади четырехклапанной конструкции головки с тарельчатыми клапанами (хотя технически схема с гильзой позволяет обеспечить площади, недостижимые для тарельчатых клапанов). При этом во время испытаний подтвердилось предположение Рикардо, что благодаря более быстрому открыванию окон при гильзовом газораспределении необходимые фазы впуска и выпуска потребуются более узкие, чем в четырехклапанных головках.

При проведении сравнительных испытаний бензиновых двигателей выяснилось, что:

  1. При использовании одного моторного топлива, оптимальном опережении зажигания (в двигателях легкого топлива) и составе смеси, двигатель с тарельчатыми клапанами на режиме максимальной мощности работал на границе детонации. В то время как двигатель с гильзовым газораспределением при той же самой степени сжатия не имел следов детонации даже при опережении зажигания, увеличенном до значения, вызывающего падение крутящего момента.
  2. В двигателе с тарельчатыми клапанами оптимальное опережение зажигания составляло 31°, а скорость нарастания давления около 1.76 кг/см 2 град. На двигателе же с гильзовым газораспределением оптимальное опережение зажигания равно только 14° до вмт., а скорость нарастания давления 3.16 кг/см 2 град. Из чего следовало, что у двигателя с клапанами степень турбулизации смеси была ниже оптимальной, а у двигателя с гильзой даже выше оптимальной.
  3. Температура поршней при равновеликой мощности была значительно ниже у двигателя с гильзовым газораспределением. Что было довольно неожиданно — предполагалось, что передача тепла от поршня рубашке охлаждения через подвижную гильзу будет затруднена. Но нет.
  4. Механический КПД двигателя с гильзовым газораспределением был заметно выше, чем у двигателя с тарельчатыми клапанами, что явилось совершенно непредвиденным для Рикардо обстоятельствам. С точки зрения банальной эрудиции казалось, что огромная площадь трения подвижной гильзы должна давать куда большие механические потери, чем движение классических клапанов.
  5. Осмотр через открытые окна распределительной гильзы показал, что газы внутри цилиндра находились в состоянии быстрого вращения, так как искры от раскаленных частиц размельченного графита в виде черточек описывали траектории по окружности цилиндра.
  6. Двигатель с гильзовым газораспределением работал более устойчиво, чем двигатель с клапанами.
  7. Как и ожидалось, механический шум при гильзовом распределении был заметно меньше, тогда как шум от сгорания был явно больше, что явилось следствием большой скорости нарастания давления.
  8. Предусмотренная принудительная смазка гильзы оказалась ненужной, т.к. брызг от масляной системы кривошипных головок шатунов оказалось достаточно. При этом было установлено, что гильза равномерно смазана по всей площади окружности, как изнутри, так и снаружи гильзы, даже при резкой остановке двигателя на полной нагрузке.
  9. Расход масла в сравниваемых двигателях был почти одинаково низким.
  10. Дополнительно выяснилось также, что в двигателе с гильзовым газораспределением можно поднять степень сжатия на единицу (до границы появления детонации), используя то же топливо, что и для двигателя с тарельчатыми клапанами.

Чудеса, да и только.

Вращение смеси объяснялось тем, что в момент начала наполнения воздухом цилиндра двигателя впускные окна открываются посредством углового движения (поворота) гильзы, а закрываются при ее движении вверх. В начальный период открытия поток направляется кромкой окна цилиндра только с одной стороны и поэтому воздух поступает наклонно, заставляя заряд вращаться в направлении противоположном вращению гильзы.

Впрочем, обнаружились и проблемы. При работе на высоких давлениях и степени сжатия обнаружился прорыв газов через поршневые кольца. Дело в том, что первоначально кольца на поршне располагались в обычном порядке, с верхним кольцом на расстоянии примерно 12.7 мм от днища. В этом положении они проходили окна в теле цилиндра, но не окна в гильзе, которые в вмт. при ходе сжатия уходят выше уплотнительных колец головки цилиндра.

Да-да — великий Рикардо совсем упустил из виду, что гильза движется вверх-вниз.

Вдобавок оказалось, что при высоком давлении сгорания в дизельных двигателях гильза вспучивалась в сторону окон на величину местных деформаций, нарушая тем самым геометрию цилиндра.

После изготовления нового поршня с первой поршневой канавкой ниже уровня окон, прорыв газов прекратился. Хотя это мероприятие себя и полностью оправдало, было установлено, что очень большое расстояние от кромки поршня до первого кольца тоже нежелательно. При работе с малой нагрузкой в течение длительного времени в этом промежутке откладывался нагар, который занимал большую часть зазора, затем, когда осуществлялся резкий переход на полную мощность, тепловое расширение поршня приводило к плотному прилеганию нагара головки поршня к стенкам, что вызывало сильный задир, а иногда и заклинивание поршня.

Что касается конструкции, были преодолены некоторые конструктивные затруднения, возникающие из-за залегания уплотнительных колец в головке цилиндров. После испытания многочисленных вариантов было выяснено, что наилучшие во всех отношениях результаты были получены при использовании обычных стандартных колец с концами, подвергнутыми термической обработке, и немного закругленными во избежание поломки при их прохождении окон гильзы. Их оптимальный рабочий зазор равнялся, приблизительно 0,005 D. Для уменьшения расхода масла внизу гильзы устанавливалось сжимающее маслосъемное кольцо. Оно оказалось вполне эффективным и оставляло еще достаточно масла для смазки наружной поверхности гильзы.

Вызывала недоумение высокая величина механического КПД установки, определенная по результатам проворачиванием и подтвержденная высокими действительными показателями, так как, не смотря на относительно тяжелые возвратно-поступательно движущиеся части, полное трение при проворачивании было меньше, чем у двигателя с тарельчатыми клапанами.

Трудно было предположить, что мощность, необходимая для привода гильзы, с ее очень большой трущейся поверхностью, может быть меньше совсем незначительной мощности затрачиваемой на привод клапанов.

Было сделано предположение, что причина повышенного механического КПД двигателя скрывается в самой движущейся гильзе. Ведь гильза движется относительно цилиндра всегда — причем почти с одинаковой угловой скоростью (только вектор движения поворачивается), что является идеальным условием для жидкостной смазки, и эта скорость относительно низкая.

Казалось бы, потери на жидкостное трение на такой большой площади должны быть большими. Кроме этого, при комбинированном воздействии газов, трение гильзы значительно увеличивается в определенные периоды цикла. Например, исследование зубьев шестерен привода гильзы показали заметно увеличенную нагрузку за период приблизительно в 120° угла поворота коленчатого вала; соответствующие приблизительно 30° градусам конца хода сжатия и 90° начала хода расширения. Подсчет показал, что упругой деформация тонкой гильзы при максимальных давлениях газа достаточно, чтобы выбрать все допускаемые рабочие зазоры, и что из-за этого масляная пленка должна быть сильно нагружена в определенные периоды цикла. Однако исследования зубьев шестерен привода показало также, что увеличение нагрузки на зубья шестерен имело место и в периоды, когда поршень двигался в одном направлении с гильзой.

Предположения подтверждались и экспериментальными данными, что движущаяся гильза — приводит к уменьшению трения поршней.

Причину искали долго — и в конце концов нашли. Уже в то время было известно, что в обычном неподвижном цилиндре или гильзе смазка поршня и поршневых колец близка к граничной смазке (практически сухому трению) на любом конце хода поршня. Т.е. когда относительная скорость движения между поршнем и цилиндром стремится к нулю, кольца выдавливают смазку из-под себя, и жидкая смазка не возобновляется до тех пор, пока поршень не прошел некоторую часть своего хода (пока жидкая смазка не забьется под кольцо). Поэтому оказалось, что при непрерывном движении гильзы, даже в то время, когда поршень находится в покое, поддерживается жидкостное трение в продолжение всего цикла.

Это подтверждается эксплуатацией тысяч авиационных двигателей и тем обстоятельством, что резко локализованный износ, всегда обнаруживаемый на гильзах в двигателях с тарельчатыми клапанами в местах остановки поршневых колец в вмт., отсутствует при гильзовом газораспределении.

Кроме того, более поздние исследования, когда была применена техника измерения температуры при помощи плавких вставок, подтвердили, что и температура поршней двигателей с гильзовым газораспределением и жидкостным охлаждением немного ниже, чем температура поршней двигателя с тарельчатыми клапанами той же самой мощности и размерности. На первый взгляд это может показаться неожиданным, если иметь в виду тот факт, что теплота от поршня к охлаждаемым стенкам цилиндра должна пройти через гильзу и масляную пленку.

Однако исследования потоков теплоты, выполненные при помощи термопар показали:

  1. При условии, что рабочий зазор между гильзой и цилиндром поддерживается малым, движущаяся масляная пленка является очень эффективным проводником теплоты.
  2. Движение гильзы очень эффективно способствует передаче теплоты от одной зоны цилиндра в другую и устранению локализованных зон высокой температуры; поэтому температурный градиент по длине цилиндра намного более плавный, чем в любом другом двигателе с неподвижной гильзой, и, следовательно, температурный перепад на границе вода-металл также значительно ниже.
  3. На основе все тех же экспериментальных данных выяснилось, что передача теплоты от поршня к поворачивающей гильзе больше, чем к неподвижной гильзе.

Кроме этого, в двигателях с воспламенением от сжатия, головка цилиндра не загромождена клапанами, что дает полную свободу в выборе формы и объема камеры сгорания, и позволяет в широких пределах регулировать движение воздуха в цилиндрах.

Как известно, в двигателях с воспламенением от сжатия давления сгорания намного выше, чем в двигателях с искровым зажиганием, и соответственно в первых же экспериментах, когда были получены давления порядка 84.5-105 кг/см2, произошли поломки чугунных гильз. Одну из гильз выдуло через одно из окон в цилиндре, а в другом случае гильза треснула от верхней кромки одного из окон до верхнего края. После замены чугунной гильзы на сталь поломки гильз прекратились.

Несмотря на очень высокие давления газов, все же не было доказательств значительного трения гильзы, не было и каких-либо признаков разрушения привода.

И бензиновая, и дизельные установки в дальнейшем показали очень высокие результаты. На бензиновой установке с октановым числом около 60 было достигнуто среднее эффективное давление 10.3 кг/см.2 с минимальным расходом топлива 202 г/л.с.ч ( 274г/кВт.час). А на двигателе с воспламенением от сжатия и со средним эффективным давлением 8.5 кг/см.2 на границе дымления — даже минимальный расход топлива 161 г/л.с.ч ( 219 г/кВт.час). Позднее на таком же, только многоцилиндровом двигателе был достигнут минимальный расход топлива всего 154 г/л.с.ч ( 209 г/кВт.час).

Это очень хорошие показатели и для современных дизельных двигателей.

Чрезвычайно интересна также и полученная Рикардо оптимальная форма окон в гильзе и ответных окон в блоке цилиндров:

Должно быть очевидным, что в размерности окон есть две переменных:

  1. вертикальный ход, определяющий высоту или глубину окон;
  2. угловое движение, которое влияет на ширину и, следовательно, на количество окон.

Поэтому полная располагаемая площадь окон обуславливается исключительно вертикальным движением. Если наполовину сокращается угловое перемещение, то можно просто использовать удвоенное число окон. В практике, конечно, не желательно иметь много окон, как, впрочем, и малое их число.

В практике ширина любого окна должна быть такой, чтобы уплотнительные кольца головки цилиндра проходили их безопасно. И чтобы в случае высоких рабочих давлений, развиваемых двигателем, не происходило бы выдувания гильзы через окна цилиндра — для этого оставалось бы достаточно места для опорных поверхностей.

Опять же, возникает вопрос удобной конструкции самого привода. Так, например для восьми окон (три выпускных и пять впускных) требуется привод с достаточно узким эллипсом. В большинстве же случаев достаточно иметь всего пять окон (три впускных и два выпускных), тем более, что такая комбинация соответствует самому простому кривошипному приводу. Одно окно в гильзе при этом используется как окно общего назначения (и для впуска, и для выпуска).

В результате оптимизаций параметров для бензинового двигателя с Dцил. = 68.5 мм и ходом поршня L = 90 мм и с максимальными оборотами 6000 об/мин. использовалась гильза толщиной всего 1,27 мм.

В дальнейшем, на базе экспериментальных установок Рикардо были выпущены 6-цилиндровые автомобильные двигатели фирмы Воксхолл, а также авиационные двигатели «Геркулес» фирм Бристоль и Центаурус. Впоследствии по такой схеме выполнили двигатель фирмы Napier «Sabre», а еще позднее двигатель от фирмы Роллс-Ройс — «Игл».


Это вот двойной горизонтально-оппозитный (так называемый H-образный) мотор Napier Sabre. Весьма вычурный, надо заметить.


Начало работ над Napier Sabre — конец 1935 года, целью было построить мотор с небывалой для того времени мощностью в 2000 л.с. И это было достигнуто — в марте 1939 года Sabre выдал 2050 л.с., став первым в мире авиамотором, преодолевшем двухтысячесильный рубеж. 24 цилиндра, хрен ли вы думали.

Было найдено, что гильзовое газораспределение, ввиду отсутствия горячих выпускных клапанов, отсутствия отравления выхлопа свинцом и компактной формы каморы сгорания с центральным расположенном свечи зажигания, может обеспечить получение более высокой мощности в пределах, устанавливаемых бездетонационной работой.

Был сделан тщательный анализ различных возможных форм гильзового газораспределения, и наиболее подходящей была признана система газораспределения с одной гильзой, имеющей комбинированное возвратно-поступательное и вращательное движение, как это было запатентовано Бертом и Мак-Колумом почти полвека назад. При необходимости такой двигатель мог также допустить наличие значительно более высокого относительного содержания тетраэтилсвинца в топливе. В то время октановое число топлива было очень низким, а тетраэтилсвинец был почти единственным средством заметного его повышения, так что получаемые преимущества были очень существенными.

Следующим шагом в развитии двигателей с гильзовым газораспределением стала разработка и испытания конструкций с алюминиевыми цилиндрами и блоками (в то время еще только начинали появляться кремнисто-алюминиевые сплавы). Больше всего сомнений было в значительных тепловых расширениях цилиндров двигателя. Необходимо было обеспечить надлежащий рабочий зазор между гильзой и цилиндром, чтобы можно было пустить двигатель из холодного состояния при самой низкой окружающей температуре. И здесь важна не относительная, а абсолютная величина теплового зазора. На двигателях с диаметром цилиндров до 127 мм и стальной гильзе это условия были вполне приемлемыми, и обеспечивали практически безизносную работу двигателя в течение длительного времени.

Требования снижения веса, особенно для авиационных двигателей потребовало особого подбора материалов для пары поршень-гильза-блок. Требовались алюминиевые сплавы для блока, что было конечно самым перспективным направлением, особенно кремнисто-алюминиевые композиции (сплавы типа АК 4), но это то и составляло одну из основных сложностей при постройке двигателя с гильзовым газораспределением. А для двигателей с воздушным охлаждением, где теплонапряженность гораздо выше, эта проблема стояла еще острее.

При постройке двигателя из легкого сплава с воздушным охлаждением гильзы стали изготавливать из аустенитной стали; при таком сочетании материалов разница в тепловом расширении цилиндра и гильзы уменьшилась приблизительно до 1,3:1 с 2,6:1 при обычном алюминиевом сплаве и обычной углеродистой стали.

Но простая аустенитная сталь в качестве материала для трущейся поверхности оказалась неудовлетворительной. В то время как наружная поверхность достаточно хорошо работала по поверхности цилиндра, она не отвечала требованиям работы поршневых колец, которые сильно срабатывались, а на гильзе и юбке поршня образовывались сильные задиры. Накатка, дробеструйка и хромирование ничего не улучшило, поэтому было принято решение временно перейти на толстостенные чугуны, которые можно азотировать.

Впоследствии фирма Бристоль, которая занималась этой проблемой, смогла преодолеть основные сложности при мехобработке и закалке, после которой происходило искривления гильзы. Правда, отшлифованная чистая и очень твердая поверхность затрудняла смазку из-за недостатка смачивания поверхности, что представляло новую проблему, которую вновь удалось решить применением технологии «сатин-финиш», аналога современного хонингования с последующим суперфинишированием.

После устранения этих трудностей отлитая центробежным способом азотированная гильза из аустенитной стали оказалась наилучшей во всех отношениях для всех двигателей с гильзовым газораспределением, в том числе и для двигателей с воздушным охлаждением. Единственным недостатком является ее низкая теплопроводность.

Двигатели с воспламенением от сжатия с гильзовым газораспределением также обладали неплохими весовыми показателями. Так, еще в 1930 году фирма Роллс-ройс на двигателе «Кестрелл» при весе 336 кг получила максимальную мощность в 340 л.с. при расходе 172 г/л.с.ч (234 г/кВт.ч), что еще не являлось окончательным решением. Несколько лет спустя этот двигатель был установлен на гоночный автомобиль, установивший мировой рекорд скорости в 270 км/час, лучший для дизельного двигателя того времени.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания

Карбюраторный четырехтактный двигатель (рис. 83) имеет кривошипно-шатунный и газораспределительный механизмы, системы охлаждения, смазки, питания и зажигания.

В двигателе внутреннего сгорания происходит преобразование тепловой энергии сгорающего топлива в механическую энергию поступательного движения поршня, которое кривошипно-шатун-ным механизмом преобразуется во вращательное движение коленчатого вала.

В кривошипно-шатунный механизм двигателя входят цилиндр с головкой, поршень с поршневыми кольцами, поршневой палец, шатун и коленчатый вал. Цилиндр, изготовленный за одно целое с картером, закрыт снизу поддоном (масляным картером).

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Поршень, представляющий собой металлический стакан, установлен в цилиндре двигателя. Поршневым пальцем поршень шар-нирно соединен с шатуном. Шатун нижней головкой соединен с коленчатым валом, который вращается на коренных шейках в подшипниках, расположенных в картере. На конце коленчатого вала имеется маховик.

Механизм газораспределения обеспечивает своевременное заполнение цилиндров горючей смесью и удаление продуктов его рания. Он состоит из двух клапанов — впускного и выпускного с пружинами и направляющими втулками, толкателей, распределительного вала и распределительных шестерен.

Рис. 82. Схема устройства автомобиля:
а — легкового, 1 — двигатель, 2 — рулевое управление, 3 — кузов, 4 — топливный бак, 5— рессоры, 6 —колеса, 7 — кардан, 8 — передача, 9 — коробка передач, 11 — сцепление, 12 — амортизатор, 13 — рама

Система охлаждения служит для отвода тепла от стенок цилиндра и его головки, сильно нагревающихся от горячих газов при работе двигателя.

Система смазки служит для подачи масла к трущимся деталям двигателя, в результате чего уменьшается трение и износ деталей.

Масло из поддона масляным насосом по трубопроводам и каналам в деталях двигателя подводится к трущимся поверхностям деталей.

Система питания предназначается для приготовления горючей смеси, которая подается в цилиндры двигателя. Смесь приготовляется в приборе — карбюраторе, установленном на двигателе.

Система зажигания служит для воспламенения горючей смеси в цилиндрах двигателя. Воспламеняется смесь электрической искрой от свечи зажигания.

При движении поршня вниз открывается впускной клапан и за счет создаваемого разрежения в цилиндр засасывается горючая смесь. При достижении поршнем нижнего положения впускной клапан закрывается. При движении поршня вверх поступившая горючая смесь сжимается. В конце сжатия смесь воспламеняется электрической искрой.

Образующиеся при сгорании горючей смеси газы расширяются и давят на поршень. Поршень под давлением газов, двигаясь вниз, перемещает шатун, который поворачивает коленчатый вал двигателя. При последующем движении поршня вверх открывается выпускной клапан и отработавшие газы выталкиваются из цилиндра. Этот процесс непрерывно повторяется, чем и обеспечивается вращение коленчатого вала двигателя. За один полный оборот коленчатого вала поршень делает один ход вниз и один ход вверх.

Изменение направления движения поршня происходит в крайнем верхнем и в крайнем нижнем положениях. Верхнее положение поршня называется верхней мертвой точкой (в. м. т.), нижнее — нижней мертвой точкой (н. м. т.).

Рис. 83. Схема устройства четырехтактного карбюраторного двигателя

Ходом поршня называется расстояние, пройденное им от одной мертвой точки до другой мертвой точки.

Тактом называется процесс, происходящий в цилиндре за один ход поршня.

Поступление горючей смеси в цилиндр, ее сжатие, расширение при сгорании и выпуск отработавших газов из цилиндра, т. е. совокупность всех процессов, происходящих в цилиндре при работе двигателя, называется рабочим циклом.

Рис. 84. Рабочий процесс четырехтактного карбюраторного двигателя:
а — такт впуска, б — такт сжатия, в — рабочий ход, г —такт выпуска

Полный рабочий цикл каждого цилиндра двигателя может совершаться за четыре хода поршня, т. е. за два оборота коленчатого вала, и за два хода поршня, т. е. за один оборот коленчатого вала. Двигатели, работающие по первому циклу, называются четырехтактными, а работающие по второму циклу — двухтактными.

Пространство в цилиндре над поршнем при положении его в в. м. т. называется камерой сгорания.

Объем цилиндра, образующийся при перемещении поршня от в. м. т. до н. м. т., называется рабочим объемом цилиндра.

Литражом двигателя называется рабочий объем всех его цилиндров.

Полным объемом цилиндра называется сумма рабочего объема и объема камеры сгорания.

Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия двигателя. Степень сжатия показывает, во сколько раз сжимается горючая смесь, поступившая в цилиндр, при перемещении поршня от н. м. т. до в. м. т.

Механизм газораспределения двигателя устроен так, что чередование тактов в цилиндре происходит в определенной последовательности.

в первом цилиндре происходит сжатие, в третьем — впуск, в четвертом— выпуск, во втором — рабочий ход.

При третьем полуобороте (540°) коленчатого вала (рис. 86, в) поршни 1 и 4 опускаются, а поршни 2 и 3 поднимаются; при этом в первом цилиндре происходит рабочий ход, в третьем — сжатие, в четвертом — впуск, во втором — выпуск.

Рис. 86. Рабочий процесс четырехцилиндрового карбюраторного двигателя:
полуобороты коленчатого вала: а — первый, б — второй, в — третий, г — четвертый; 1, 2, 3, 4 — поршни

При четвертом полуобороте (720°) коленчатого вала (рис. 86, г) поршни 1 vi 4 поднимаются, а поршни 2 и 3 опускаются; при этом в первом цилиндре происходит выпуск, в третьем — рабочий ход, в четвертом — сжатие, во втором — впуск.

При дальнейшем вращении коленчатого вала рабочие процессы повторяются в той же последовательности.

Кривошипно-шатунный механизм. В кривошипно-шатунный механизм многоцилиндрового двигателя входят блок цилиндров, головка блока цилиндров с уплотнительной прокладкой, поршни, поршневые кольца, поршневые пальцы, шатуны, коленчатый вал, маховик.

Блок цилиндров отливается из серого чугуна или из алюминиевого сплава.

Рис. 87. Головка блока цилиндров (а) и блок цилиндров с масляным картером (б):
1— головка блока цилиндров, 2 — прокладка крышки головки блока цилиндров, 3 — крышка головки блока цилиндров, 4, 7 — прокладки выпускного трубопровода, 5 — выпускной трубопровод, Ь — прокладка головки блока цилиндров, 8 — блок цилиндров, 9 — втулка передней шейки распределительного вала, 10 — крышка распределительных шестерен, 11 — прокладка крышки распределительных шестерен, 12 — крышки коренных подшипников. 13 — масляный картер, 14 — прокладка масляного картера, 15 — картер сцепления

У автомобильных двигателей применяют рядное расположение цилиндров, т. е. такое, когда цилиндры располагаются в ряд один за другим в одной плоскости, и V-образное, при котором один ряд цилиндров расположен к другому ряду под определенным углом.

Цилиндры двигателей могут быть образованы стенками самого блока или выполнены в виде сменных гильз. Гильзы называются сухими, если они всей внешней поверхностью соприкасаются с блоком и непосредственно охлаждающей жидкостью не омываются, и мокрыми, если они непосредственно омываются охлаждающей жидкостью. Внутренняя поверхность цилиндра или гильзы, являющаяся направляющей для поршней, тщательно обрабатывается и называется зеркалом цилиндра (гильзы). Внутри блока вокруг гильз имеется пространство для заполнения его охлаждающей жидкостью — рубашка охлаждения. К блоку цилиндров крепится большинство систем и устройств двигателя.

Рис. 88. Детали кривошипно-шатунного механизма восьмицилиндрового
V-образного двигателя: 1 — храповик, 2 — шкив, 3 — носок коленчатого вала, 4 — шестерня коленчатого вала, 5, 8, 9 — крышки коренных подшипников, 8 — противовес, 9 — вкладыш коренного подшипника, 10 — фланец, И — зубчатый венец маховика, 12 — маховик, 13 — поршень,“4 N — шатун, 15 — шатунная шейка, 16 — коренная шейка, 17 — нижняя крышка шатуна, 18 — нижняя (кривошипная) головка шатуна, 19 — стержень шатуна, 20 — верхняя (поршневая) головка шатуна, 21 — втулка верхней головки шатуна, 22 — вкладыш шатунного подшипника, 23 — стопорное кольцо, 24 — поршневой палец, 25 —- поршневые компрессионные кольца, 26, 27, 28 — детали составного маслосъемного кольца

Головка блока цилиндров (рис. 87,а) изготовляется общей на все цилиндры одного ряда в виде отливки из чугуна или алюминиевого сплава. Против каждого из цилиндров она имеет углубление, образующее камеру сгорания. Головка блока цилиндров крепится к блоку цилиндров (рис. 87,6) шпильками или болтами.

Для устранения пропусков газов при работе двигателя и утечки охлаждающей жидкости между блоком и головкой цилиндров устанавливается уплотнительная прокладка.

Коленчатый вал (рис. 88) воспринимает усилия от поршней и передает образующийся крутящий момент механизмам трансмиссии. Коленчатый вал состоит из коренных и шатунных шеек, носка, фланца и противовесов. Шейки коленчатого вала соединяются щеками, которые с шатунными шейками образуют кривошипы коленчатого вала. Их расположение и количество зависят от типа двигателя.

На переднем конце (носке) вала устанавливают шестерню, шкив и храповик для пусковой рукоятки. Шестерня коленчатого вала находится в постоянном зацеплении с шестерней распределительного вала. Шкив коленчатого вала служит для привода вентилятора, водяного насоса, компрессора, генератора и насоса гидроусилителя рулевого управления.

На заднем конце коленчатого вала к фланцу крепится маховик.

Противовесы предназначаются для равномерного вращения коленчатого вала и разгрузки коренных подшипников от действия центробежных сил. Противовесы обычно выполняют заодно с валом.

Для поступления смазки к шатунным шейкам вала в щеках имеются сквозные каналы.

Коленчатые валы штампуют из качественной стали или отливают из магниевого чугуна.

Шатун соединяет поршень с шатунной шейкой коленчатого вала и состоит из стального стержня (рис. 88) двутаврового сечения, верхней неразъемной головки и нижней разъемной головки.

Верхняя головка шатуна поршневым пальцем соединяется с поршнем. При плавающем пальце для уменьшения трения в головку шатуна запрессовывают бронзовую втулку. Для смазки трущихся поверхностей в головке и втулке сделаны отверстия.

В нижнюю головку шатуна, выполненную из двух половин, устанавливают подшипник, который состоит из двух вкладышей.

Крышка нижней головки шатуна крепится к шатуну болтами, гайки которых после затяжки шплинтуются.

Поршни (рис. 88) воспринимают давление газов в цилиндре и передают это давление через шатуны коленчатому валу. Поршень состоит из уплотняющей части — «головки» с днищем и нижней направляющей части — «юбки». На уплотняющей части поршня имеются канавки для размещения поршневых колец.

Так как при работе поршень, сильно нагреваясь, расширяется, то его устанавливают в цилиндре с определенным зазором, а направляющую часть поршня делают разрезной (пружинной).

В середине направляющей части внутри поршня имеются две бобышки с отверстиями для установки поршневого пальца. Нагреваясь, поршень расширяется в направлении оси поршневого пальца больше, так как в бобышках сосредоточена большая часть массы металла. Чтобы поршень при нагреве получил цилиндрическую форму, его диаметр в плоскости, перпендикулярной оси пальца, делают на 0,15—0,19 мм больше, чем в осевом направлении.

Для равномерной работы двигателя поршни всех цилиндров подбирают равного веса.

Поршневой палец (рис. 88) служит для соединения поршня с верхней головкой шатуна. Обычно применяют пальцы плавающего типа, которые могут поворачиваться и в отверстиях бобышек поршня и в верхней головке шатуна. Для предотвращения продольного (бокового) перемещения пальца в поршне, что может привести к повреждению зеркала цилиндра, палец закрепляют стопорными кольцами.

Поршневые кольца (рис. 88), устанавливаемые на поршне, отливаются из чугуна и подразделяются на компрессионные и маслосъемные. Компрессионные кольца уплотняют соединение поршня с цилиндром и служат для предотвращения прорыва газов через зазор между юбкой поршня и гильзой цилиндра.

Маслосъемные кольца служат для снятия излишков масла с зеркала цилиндров и препятствуют его проникновению в камеру сгорания. Поршневые кольца изготовляются несколько большего диаметра, чем поршни. На кольцах делается разрез, называемый замком, который позволяет кольцам пружинить. При установке колец в цилиндр вместе с поршнем их предварительно сжимают. Зазор в замке должен составлять 0,2—0,4 мм.

Маслосъемное кольцо имеет сквозные прорези для отвода масла. Устанавливается оно на поршне ниже компрессионных колец. Маслосъемное кольцо двигателя автомобилей ЗИЛ-130 и ГАЗ-24 «Волга» состоит из двух стальных кольцевых дисков, осевого и радиального расширителей.

Шатунные и коренные подшипники. Шатунные подшипники, расположенные в нижней головке шатуна (рис. 88), изготовлены в виде разрезных сменных вкладышей, чтобы их можно было надеть на шейку коленчатого вала. Они взаимозаменяемые.

Коренные подшипники также представляют собой сменные тонкостенные вкладыши. Верхние вкладыши коренных подшипников устанавливаются в гнезда блока цилиндров, а нижние — в крышки, которые крепятся к картеру болтами.

Вкладыши коренных и шатунных подшипников изготовляются из стальной ленты с нанесенным на нее медно-никелевым подслоем и верхним слоем из сплава СОС 6-6 (олово 6%, сурьма 6%, остальное свинец) или сталеалюминиевые, представляющие собой стальную ленту, покрытую антифрикционным сплавом из алюминия с 20% олова и 1% меди.

Маховик (рис. 88) служит для обеспечения равномерного вращения коленчатого вала и крепится к его фланцу болтами. На маховике закрепляется зубчатый венец, с которым зацепляется шестерня электродвигателя пускового устройства — стартера.

Рис. 89. Детали газораспределительного механизма восьмицилиндрового V-образного двигателя:
1 — распределительный вал, 2 — распределительная шестерня, 3 — упорный фланец, 4 — опорная шейка, 5 — эксцентрик привода топливного насоса, 6 — втулка шейки распределительного вала, 7 — кулачки распределительного вала, 8 — шестерня привода масляного насоса и преры вателя-распределителя, 9 — стойка коромысла клапана, 10 — коромысло клапана, 11 —ось коромысла, 12 — толкатели клапана, 13 — толкающая, 14 — выпускной клапан, 15— механизм вращения выпускного клапана, 16 — регулировочный винт, 17 — пружина клапана, is — направляющая B1V.-1K4 клапана, 19 — впускной клапан, 20 — сухарь, 21 —опорная шайба пружины клапана, 22 —седло клапана

В процессе эксплуатации автомобиля могут выявиться следующие наиболее характерные неисправности кривошипно-ша|ун-ного механизма: пригорание, износ и поломка поршневых колец; износ поршней и цилиндров; износ шатунных и коренных подшипников; нарушение уплотнения прокладки головки цилиндров при слабой или неравномерной затяжке гаек крепления; обрыв шпилек и повреждение резьбы вследствие слабой или неравномерной затяжки; нагарообразование в камерах сгорания и др.

Газораспределительный механизм служит для своевременного впуска в цилиндры горючей смеси и выпуска отработавших газов. На современных карбюраторных двигателях впуск смеси и выпуск отработавших газов производятся клапанами, которые могут иметь нижнее или верхнее расположение.

Устройство механизма газораспределения зависит от типа и конструкции двигателя. Большинство современных двигателей имеет газораспределительный механизм с верхним расположением клапанов.

На рис. 89 показаны детали газораспределительного механизма с верхним расположением клапанов восьмицилиндрового V-образ-ного двигателя. У таких двигателей распределительный вал располагается в блоке между двумя рядами цилиндров. От него при помощи толкателей, толкающих штанг и коромысел приводятся в действие клапаны как правого, так и левого рядов цилиндров.

Распределительный вал имеет кулачки, опорные шейки, эксцентрик для привода топливного насоса и шестерню для привода масляного насоса и прерывателя-распределителя (вал изготовляется заодно с кулачками и опорными шейками).

Для каждого цилиндра на валу имеется два кулачка — впускной и выпускной. Одноименные кулачки располагаются в четырехцилиндровом двигателе под углом 90°, в шестицилиндровом под углом 60°, в восьмицилиндровом под углом 45°.

На переднем конце распределительного вала устанавливается ка шпонке шестерня, которая находится в зацеплении с шестерней, установленной на коленчатом валу. Для правильной работы двигателя коленчатый и распределительный валы должны находиться в строго определенном положении относительно друг друга. Поэтому при сборке распределительные шестерни вводятся в зацепление по имеющимся на их зубьях меткам.

Осевые перемещения распределительного вала у большинства карбюраторных двигателей ограничиваются упорным фланцем, закрепленным на блоке между торцом передней шейки вала и ступицей распределительной шестерни. Опорные шейки распределительного вала вращаются в стальных втулках, залитых сплавом СОС 6-6, или металлокерамических втулках.

Клапаны 14 и 19 состоят из головок и стержней. Изготовляют их из жаростойкой стали. Головка клапана в нижней части имеет шлифованную коническую поверхность в виде круглой полоски, которой она соприкасается с седлом, запрессованным в го-лорку блока цилиндров. Клапаны установлены в направляющих втулках 18.

Для улучшения охлаждения стержни выпускных клапанов двигателей автомобилей ЗИЛ-130 и ГАЗ-66 выполняют полыми. В них помещают соли натрия с температурой плавления 97° С. При рабочей температуре клапана натрий находится в жидком состоянии, это способствует переносу тепла от головки клапана к стержню и направляющей втулке. Плотное прижатие клапана к седлу обеспечивается давлением клапанной пружины, закрепленной при помощи опорной шайбы и конических разрезных сухарей. Головка выпускного клапана имеет жаростойкую наплавку посадочной фаски.

Выпускные клапаны для уменьшения неравномерной выработки седла в блоке и посадочной фаски головки клапана принудительно проворачиваются во время работы двигателя специальным механизмом поворота.

Толкатели, передающие усилие от распределительного вала к клапану, представляют собой стальные стаканы, на внутреннюю сферическую поверхность которых опираются толкающие штанги. Для повышения износостойкости торцы толкателей, соприкасающиеся с кулачками, наплавляют специальным чугуном. В нижней части толкателя имеется отверстие для слива накопившегося в нем масла. Усилия от кулачков распределительного вала к клапанам передаются толкателями, штангами и коромыслами. Штанги изготовляются трубчатыми из стали или дюралюминия. По концам в штанги запрессовывают стальные наконечники. Коромысла свободно установлены на осях. Между стержнем клапана и концом коромысла имеется зазор, который регулируется винтом.

У автомобиля ВАЗ-2101 «Жигули» распределительный вал расположен в отдельном корпусе на головке блока цилиндров (рис. 90) и вращается в пяти подшипниках скольжения. Привод от кулачков вала к клапанам осуществляется через одноплечие рычаги (рокеры) без толкателей, штанг и коромысел. Одним концом рычаг привода клапана опирается на торец стержня клапана, другим — на сферическую головку регулировочного болта и удерживается на ней при помощи шпилечной пружины.

Рис. 90. Клапанный механизм двигателя ВАЗ-2101:
1 — клапан, 2 — защитный колпачок, 3 — одноплечий рычаг (рокер), 4 — распределительный вал, 5 — зазор между рокером и кулачком, 6 — сферическая головка регулировочного болта, 7 — шестигранник регулировочного болта, 8 — контргайка. 9 — шпилечная пружина

Отпустив контргайку и вращая регулировочный болт при помощи шестигранника, можно изменять величину зазора (0,15 мм при холодном двигателе как для впускных, так и выпускных клапанов) между рычагом привода клапана и кулачком распределительного вала. В алюминиевую головку блока цилиндров запрессованы чугунные седла и направляющие втулки клапанов.

Рис. 91. Цепной привод распределительного вала двигателя ВАЗ:
1 — звездочка распределительного вала, 2 — цепь, 3 — успокоитель, 4 — звездочка валика привода масляного насоса и прерывателя-распределителя, 5 — звездочка коленчатого вала (ведущая), 6 — башмак натяжного устройства, 7 — плунжер, 8 — гайка плунжера

Расположение распределительного вала на головке блока цилиндров («Москвич-412», ВАЗ-2101 «Жигули») дает возможность уменьшить массу и инерционные силы клапанного механизма, что позволяет обеспечить большее число оборотов коленчатого вала двигателя.

Распределительный вал двигателя ВАЗ-2101 приводится в действие от коленчатого вала двухрядной роликовой цепью (рис.91), которая связывает ведущую звездочку коленчатого вала с ведомой звездочкой распределительного вала и ведомой звездочкой валика привода масляного насоса и прерывателя-распределителя. Конструкция цепного привода позволяет сохранить при сборке двигателя (после ремонта) неизменной взаимную установку цепи и звездочек. Установку фаз газораспределения выполняют по специальной метке на ведущей звездочке, которую устанавливают против прилива, имеющегося на блоке двигателя.

Для гашения волнообразных колебаний цепи, появляющихся при резком изменении числа оборотов коленчатого вала, служит успокоитель. Напротив него размещается башмак натяжного устройства. Один конец башмака закреплен на оси, а другой соединяется с плунжером, прижимающим башмак к цепи. Натяжение цепи регулируют при помощи гайки плунжера.

К основным неисправностям газораспределительного механизма относятся: увеличенные или уменьшенные зазоры в приводе клапанов, которые появляются вследствие износа деталей или неправильной регулировки; износ или обгорание рабочих поверхностей впускных и выпускных клапанов или их седел; поломка клапанной пружины или толкающей штанги; износ толкателей или их направляющих; износ направляющих втулок клапанов; износ распределительных шестерен; износ подшипников распределительного вала.

Для устранения неисправностей газораспределительного механизма необходимо: отрегулировать зазоры между стержнями клапанов и носками коромысел, притереть клапаны к седлам, заменить сломанные пружины или изношенные детали (втулки коромысел, втулки распределительного вала и др.).

The Knight Valveless Engine - Scientific American

  • Share on Facebook

  • Share on Twitter

  • Share on Reddit

  • Share on LinkedIn

  • Share via Email

  • Print

В обычных автомобильных тарельчатых клапанах тарельчатые или грибовидные клапаны поднимаются со своих мест с помощью кулачков и снова устанавливаются на свои места пружинами. В четырехтактном двигателе клапаны в каждом цилиндре открываются и закрываются один раз за два оборота коленчатого вала. Это прерывистое движение клапана должно производиться кулачком и пружинным механизмом. Клапан не закрывается до тех пор, пока он не окажется в фактическом контакте со своим седлом. Следовательно, клапан mU8 не может свободно садиться под действием пружины. Шум возникает, когда кулачок ударяет по клапану, поднимая его, а также когда пружина ударяет по седлу и начинает8 закрывать клапан. Этот шум сам по себе указывает на склонность к износу. В обычной конструкции нет возможности предусмотреть износ. Кроме того, ни кулачок, ни пружина не подходят для работы на высоких скоростях. В то время как тарельчатые клапаны хорошо работают на низких оборотах, они ненадежны на высоких оборотах двигателя, а «синхронизация», или открытие и закрытие клапанов, является неопределенным. Это самое серьезное возражение против тарельчатого клапана. Путем радикального изменения конструкции Чарльз Найт из Чикаго разработал конструкцию клапана для четырехтактного двигателя внутреннего сгорания, в которой устранены все присущие тарельчатому клапану недостатки. На какое-то время !до 1908 г. мистер Найт изготовил и продал в небольших количествах автомобиль под названием «Бесшумный рыцарь». Претензия к тишине лежала в моторе. Несмотря на то, что автомобиль был достаточно успешным, он, возможно, из-за отсутствия детальной доработки и использования нового двигателя не понравился автомобильной торговле. Найт, которого больше всего интересовал сам двигатель, после этого привез свое изобретение в Англию и сумел заинтересовать им английскую компанию Daimle. После многих испытаний, дальнейших разработок и доработок английская фирма приняла его на вооружение. Почти . сразу же двигатель стал предметом многочисленных дискуссий и исследований британских автомобильных и технических обществ, кульминацией которых стало исчерпывающее испытание, проведенное Королевским автомобильным клубом. В рамках этого испытания двигатель мощностью 38 лошадиных сил (диаметр цилиндра 4 % и ход поршня 5 дюймов) работал непрерывно в течение 132 оборотов в минуту при нагрузке в 54 лошадиные силы. Затем мотор поместили в шасси и проехали 2001 милю по знаменитой трассе Броуллендс. Затем его вернули на испытательную стойку, и он проработал еще пять часов и развил 57 лошадиных сил. В условиях этого испытания нагрузка на испытательную стойку никогда не должна была быть меньше расчетной мощности двигателя более чем в 1,3 л.с. Ходовые испытания должны были проводиться на скорости не менее 40 миль в час, а окончательный возврат двигателя на стендовые испытания должен был определить его окончательное состояние. Компания Daimler настаивала на этих экстраординарных львах испытаний, и они особенно желали финальных стендовых испытаний. Причина становится очевидной, когда отмечается, что мощность, развиваемая в лошадиных силах, превышала мощность, развиваемую в начале испытания. испытания ведутся при тех же оборотах двигателя — 1200 об/мин. Очевидно, компания «Даймлер» рассудила, что, хотя двигатель с тарельчатым клапаном может пройти первую и вторую стадии испытаний, такой двигатель явно не может пройти последнюю стадию, т.е. е., развивать большую мощность, быть в лучшем состоянии после продолжительного бега. После того, как двигатель успешно выдержал испытание, компания Daimler была награждена кубком Дьюара, а мотор получил безоговорочное официальное одобрение технического комитета Королевского автомобильного клуба! В этой стране были проведены обширные испытания и эксперименты с двигателем, в результате чего три американские фирмы получили лицензии. Через несколько лет новый мотор будет так же известен здесь, как и за рубежом. Двигатель на самом деле не бесклапанный и никоим образом не похож на двухтактный двигатель. Изобретение Найта представляет собой механическое или конструктивное усовершенствование конструкции клапанного механизма. Клапанный механизм состоит из двух концентрических втулок, скользящих вверх и вниз между поршнем и стенками цилиндра. Некоторые прорези в клапанах Be совпадают друг с другом через определенные промежутки, образуя большие и прямые отверстия в камеру сгорания из выпускного и впускного отверстий в цилиндре. Втулки приводятся в действие небольшими шатунами от небольшого кривошипного вала или эксцентрикового вала, вращающегося со скоростью, равной половине скорости главного вала. }иг. 1 показано общее расположение деталей и их номенклатура. Детальные операции клапанов лучше всего видны на семи диаграммах, составляющих рис. 2. На диаграммах показаны относительные положения внутренней и внешней втулок в различных точках цикла двигателя. Показан способ возвратно-поступательного движения втулок шатунами от эксцентрикового вала. Эксцентриковый вал приводится в движение бесшумной цепью от главного кривошипного вала и вращается со скоростью, равной половине скорости двигателя. Эксцентрик, управляющий внутренней втулкой, имеет определенное опережение или «опережение» по сравнению с эксцентриком внешней втулки. Это опережение вместе с вращением эксцентрикового вала со скоростью, равной половине скорости коленчатого вала, образует рабочий цикл. На первой диаграмме поршень находится сразу за центром своего tOlp и начинает опускаться на такте впуска. Внутренний рукав находится в нижней части своего хода и медленно движется вверх, внешний рукав находится примерно на полпути своего пути и быстро движется вниз. Отверстие из карбюратора через впускной канал в цилиндр представляет собой быстро увеличивающееся пространство между верхним краем прорези во внутренней втулке и нижним краем прорези в наружной втулке. К тому времени поршень находится чуть более чем наполовину на всасывании! ход впускной канал широко открыт, как показано на второй диаграмме рис. 2. Наружная втулка теперь находится в нижней части своего хода и движется очень медленно, внутренняя втулка набирает скорость, двигаясь вверх; а вход закрыт нижней кромкой прорези внутренней втулки при прохождении верхней кромки прорези внешней втулки, как показано на третьей схеме рис. 2. Внутренняя втулка продолжает двигаться вверх вместе с поршнем при ее сжатии. такта, кольца в головке и поршне плотно герметизируют пространство под давлением, пока не произойдет взрыв. Втулки и поршень находятся в положении, показанном на четвертой диаграмме. Около двух третей глубины взрыва (продолжение на стр. 176)

Эта статья была первоначально опубликована под названием «Бесклапанный двигатель рыцаря» в журнале Scientific American 105, 8, 168 (август 1911 г.)

doi:10.1038/scientificamerican08191911-168

ОБ АВТОРЕ(АХ) Как

2-0004 Работа с тактными и 4-тактными двигателями

The Drive и ее партнеры могут получать комиссию, если вы покупаете продукт по одной из наших ссылок. Подробнее.

Вы когда-нибудь задумывались, зачем нужно добавлять масло в систему подачи топлива бензопилы? Или почему у некоторых мотоциклов для бездорожья звук выхлопа выше, чем у других?

Все мы были обременены работой во дворе или сидели за рулем автомобиля. Но это не значит, что у вас была возможность погрузиться в особенности двухтактных и четырехтактных двигателей. На самом деле, вы могли и не знать, что есть разница, пока кто-нибудь не упомянул в разговоре о двух ударах.

Тут тоже нечего стыдиться. Дело в том, что большинство людей полагаются только на 4-тактные двигатели. И даже это меняется по мере того, как электромобили, мотоциклы и садовые инструменты становятся все более заметными в повседневной жизни. Но если вы собираетесь заняться чем-то, связанным с двигателем, вам нужно знать разницу. Не волнуйся, Привод в деле!

Понимание цикла двигателя

Прежде всего, термины «двухтактный» и «четырехтактный» относятся к продолжительности рабочего цикла двигателя. Чтобы лучше понять, что означают эти термины, нам нужно начать с очистки вашего разума. Избавьтесь от всего, что вы знаете о поршневых двигателях, кроме того факта, что у вас есть поршень, который постоянно перемещается вверх и вниз в камере сгорания.

Визуализируйте движение поршня вверх и вниз. Сила, приводящая в движение это движение, исходит от воспламенения или сгорания смеси, которая с огромной силой толкает поршень вниз. Воспламенение является основной целью, но для этого сначала в камеру должны попасть топливо и воздух. Затем он должен быть сжат, чтобы максимизировать количество энергии, которое будет получено от сжигания. После сжатия происходит воспламенение. Но прежде чем цикл может начаться снова, выхлоп из отработанной смеси должен выйти из камеры.

Термин «ход» происходит от движения поршня в течение всего цикла двигателя. Соответствующее число указывает на то, сколько раз поршень должен пройти внутри камеры, чтобы выполнить все функции. Проще говоря, 4-тактные достигают этих целей за четыре гребка, а 2-тактные делают это, как вы уже догадались, за два.

4-тактная головка блока цилиндров., Хэнк О'Хоп

Что такое 4-тактный двигатель?

Четырехтактный цикл впервые появился еще в 1861 году, когда человек по имени Николас Отто придумал его конструкцию. Вот почему вы, возможно, слышали, что его называют «циклом Отто» 9.0039 в редких случаях .

Этот метод посвящает один штрих каждой из четырех функций, которые мы обсуждали ранее. Но это не единственная определяющая характеристика этого типа двигателя. То, как топливо и воздух входят и выходят из камеры, имеет решающее значение для этой конструкции. Вот где вступают в игру распределительный вал и тарельчатые клапаны в верхней части камеры сгорания.

Распредвал от Chrysler 440 куб. дюймов V8. Обратите внимание на два лепестка на цилиндр., Хэнк О'Хоп

Давайте разберем четырехтактный цикл. В четырехтактном двигателе цикл начинается с такта впуска. Когда поршень движется вниз, распределительный вал перемещается в положение, открывающее впускной клапан. Вакуум от движения поршня вниз втягивает воздушно-топливную смесь через этот клапан. Как только поршень достигает дна камеры, он больше не может втягивать воздух, и впускной клапан закрывается.

Впускные и выпускные клапаны., Hank O'Hop

После такта впуска поршень начинает двигаться вверх по камере для сжатия смеси. Как только поршень достигает верхней части камеры, происходит воспламенение, и он снова перемещается вниз, при этом все клапаны остаются закрытыми в течение тактов сжатия и зажигания. После такта зажигания выпускной клапан открывается, позволяя поршню проталкивать отработавшую смесь, пока она не достигнет верхней части камеры. Затем выпускной клапан закрывается, и цикл начинается снова.

Головка блока цилиндров 2-х тактный. Обратите внимание на отсутствие клапанов., Hank O'Hop

Что такое двухтактный двигатель?

Как ни странно, двухтактные двигатели появились вскоре после четырехтактных, когда человек по имени сэр Дугалд Клерк изобрел первую успешную конструкцию в 1878 году. для скорости с 2-тактными двигателями. Прежде чем мы сможем углубиться в то, как 2-тактный двигатель завершает свой цикл, нам нужно исключить несколько деталей, от которых зависят 4-тактные двигатели.

2-тактные двигатели не имеют ни распределительного вала, ни клапанов, как в 4-тактных двигателях. Вместо этого они оснащены системой золотниковых клапанов, в которой два постоянно открытых отверстия расположены рядом друг с другом в стенке цилиндра. Они известны как выпускной порт и впускной порт. Сам поршень работает как клапан, контролирующий поток в любой порт и из него.

2-тактный впускной порт., Hank O'Hop 2-тактный выпускной порт. Обратите внимание на его приподнятое положение по отношению к впускному порту., Hank O'Hop

Важно отметить, что выпускное отверстие обычно расположено выше впускного, потому что такая конфигурация дает больше времени для выхода выхлопных газов в этом цикле.

Эта компоновка позволяет выпуску, впуску и сгоранию топливных смесей происходить за один и тот же ход. От точки зажигания поршень начинает двигаться вниз. Как только поршень перемещается так далеко, он открывает выпускное отверстие, позволяя отработавшей топливной смеси начать покидать камеру. По мере движения поршня положение начнет открывать впускное отверстие, так что начнет поступать свежая топливная смесь. Как только поршень достигает дна, он начинает двигаться обратно вверх, продолжая выталкивать оставшиеся выхлопные газы и сжимать новую топливную смесь до тех пор, пока не закроет отверстие и будет работать только на сжатие свежей топливной смеси. Зажигание снова начинает цикл.

Двухтактный язычковый клапан., Hank O'Hop

Ключевым компонентом этого цикла является язычковый клапан в высокопроизводительных приложениях. Этот клапан находится во впускном отверстии и позволяет вакууму при движении поршня вниз втягивать топливо, но не проталкивать его обратно, когда поршень создает давление при движении вверх.

Уникальной особенностью двухтактных двигателей является то, что поступающее топливо также поступает в картер двигателя. В двухтактных двигателях используется система смазки с полными потерями, в которой топливо используется для смазки вращающегося узла. Вот почему в эти двигатели необходимо добавлять в топливо специальное моторное масло для 2-тактных двигателей.

Как цикл двигателя влияет на производительность двигателя?

Цикл двигателя играет важную роль в производительности, но ни один из них не превосходит другой.

Просто ради интереса, давайте начнем с очевидных преимуществ двухтактного двигателя. Поскольку у него гораздо более быстрый цикл, он может производить гораздо больше мощности без увеличения рабочего объема. В некоторых случаях выходная мощность более чем вдвое превышает мощность 4-тактного двигателя аналогичного размера. 2-тактные двигатели развивают пиковую мощность при гораздо более высоких оборотах, но укороченный цикл позволяет двигателю достигать высоких скоростей за гораздо более короткий период, эффективно увеличивая приемистость.

Это еще не все, что касается производительности. 2-тактные намного легче, чем 4-тактные. 2-тактные двигатели не имеют клапанного механизма, что вносит наибольший вклад в снижение веса. Таким образом, двухтактный двигатель не только мощнее, но и может весить почти на 50% меньше, чем его четырехтактный эквивалент, что обеспечивает значительно лучшее соотношение мощности к весу.

Еще одним преимуществом двухтактной конструкции является то, что она может работать в любом направлении, поскольку подача топлива не зависит от гравитационной подачи, что идеально подходит для ряда применений.

Если двухтактные двигатели способны развивать большую мощность, то почему мы не видим их чаще? Тому есть две существенные причины. Во-первых, они не такие долговечные, как 4-тактные, и при этом они не совсем безопасны для выбросов. Другим фактором является то, что они не так просты в управлении для среднего автомобилиста.

По сути, относительно высокая долговечность и менее загрязняющий окружающую среду фактор — вот почему мы склонны отдавать предпочтение 4-тактным двигателям для многоцилиндровых двигателей, которые мы используем в легковых, грузовых автомобилях и других крупных дорожных транспортных средствах.

Высокая выходная мощность двухтактного двигателя и возможность развивать большую мощность без увеличения размера и веса делают его очевидным выбором для других применений. Такие приложения, как высокопроизводительные внедорожники и оборудование для газонов, которые полагаются как на низкое соотношение мощности к весу, так и на двигатель, который может работать в ориентации, отдают предпочтение двухтактным двигателям.

Однако важно не исключать 4-тактные двигатели ни в одном из этих сегментов. Долговечность и низкий крутящий момент этих двигателей имеют свои преимущества. Во-первых, транспортные средства или вспомогательное оборудование, использующие 4-тактные двигатели, легче обслуживать. Как и в случае с автомобилями, низкий крутящий момент более управляем и требует меньше навыков для безопасного управления, что делает его гораздо более приятным для гонщиков и операторов.

Это не значит, что из правил нет исключений. «Давным-давно» вы даже могли найти промышленные дизельные двигатели, использующие двухтактный цикл.

Термины Engine, которые следует знать 

Получите образование.

Ход поршня

Ход поршня обусловлен движением поршня в камере сгорания. Любой цикл не требует пояснений. Соответствующее число относится к тому, сколько раз поршень должен пройти, чтобы выполнить четыре функции, необходимые для работы двигателя.

Тарельчатый клапан

Тарельчатые клапаны — это клапаны, используемые в 4-тактных двигателях. По крайней мере, эти двигатели будут иметь два клапана на цилиндр. Впускной клапан позволяет топливу и воздуху поступать в камеру, а выпускные клапаны позволяют выходить отработанной смеси.

Распределительный вал

Еще один важный компонент четырехтактных двигателей. Это компонент, отвечающий за открытие клапанов в камере сгорания. Он связан с коленчатым валом и должен правильно синхронизироваться, чтобы клапаны открывались и закрывались в нужные моменты.

Порты 

Двухтактные двигатели полагаются на порты, которые работают с поршнем для создания системы золотниковых клапанов. Когда поршень проходит мимо этих отверстий, они позволяют отработанному топливу выходить из камеры и поступать свежей смеси.

Пластинчатый клапан

Пластинчатый клапан установлен на впускном отверстии высокопроизводительных двухтактных двигателей. Эта простая система клапанов позволяет топливу поступать в камеру из-за вакуума, создаваемого поршнем, движущимся вниз, но не позволяет топливу выталкиваться при движении поршня вверх.

Часто задаваемые вопросы о двухтактных и четырехтактных двигателях

У вас есть вопросы, В Drive есть ответы!

В: В чем разница между 2-тактным и 4-тактным двигателем?

A: Основное различие: четырехтактный двигатель выполняет все функции двигателя за четыре такта, а двухтактный — за два. Существуют также некоторые существенные различия в используемых компонентах и ​​смазке этих двигателей.

В: Являются ли двухтактные двигатели вредными для окружающей среды?

A: Двухтактные двигатели вносят значительный вклад в загрязнение окружающей среды автомобилями. Поскольку они используют порты вместо клапанов, несгоревшее топливо может покинуть камеру и увеличить выбросы. Вот почему они, как правило, ограничены для использования во внедорожных транспортных средствах и двигателях с малым объемом двигателя.

В: Почему двухтактные двигатели быстрее?

A: Двухтактные двигатели выполняют все функции быстрее, чем четырехтактные. Они также имеют меньше деталей, что делает их легче. Повышенная частота вращения двигателя и лучшее соотношение мощности к весу способствуют повышению производительности автомобилей с этими двигателями.

В: Почему двухтактные двигатели не используются в автомобилях?

A: Основная причина, по которой двухтактные двигатели не используются в автомобилях, связана с их выбросами. Вдобавок ко всему, они, как правило, не такие прочные и простые в управлении, как 4-тактные.

В: Что произойдет, если залить двухтактный газ в четырехтактный двигатель?

A: Масло добавляется в топливо для 2-тактных двигателей, например, для внедорожных мотоциклов, поскольку это топливо одновременно служит смазкой для двигателя. Четырехтактный двигатель может сжечь это топливо, но это может вызвать проблемы. Это может повредить насос и фильтры, поэтому их не следует смешивать.

Видео

Узнайте больше о 2-тактных и 4-тактных двигателях с помощью этого видео.

Рекомендуемые продукты

Изогнутая мерная чашка OXO Good Grips с двумя чашками

VP Топливо для малых двигателей, не содержащее этанола, 50:1, двухтактный газ+масло, упаковка из 8 шт.


Learn more